當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.svds方法代碼示例

本文整理匯總了Python中scipy.sparse.linalg.svds方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.svds方法的具體用法?Python linalg.svds怎麽用?Python linalg.svds使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.linalg的用法示例。


在下文中一共展示了linalg.svds方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: learn_embedding

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def learn_embedding(self):

        graph = self.g.G
        A = nx.to_numpy_matrix(graph)

        # self._beta = 0.0728

        # M_g = np.eye(graph.number_of_nodes()) - self._beta * A
        # M_l = self._beta * A

        M_g = np.eye(graph.number_of_nodes())
        M_l = np.dot(A, A)

        S = np.dot(np.linalg.inv(M_g), M_l)
        # s: \sigma_k
        u, s, vt = lg.svds(S, k=self._d // 2)
        sigma = np.diagflat(np.sqrt(s))
        X1 = np.dot(u, sigma)
        X2 = np.dot(vt.T, sigma)
        # self._X = X2
        self._X = np.concatenate((X1, X2), axis=1) 
開發者ID:thunlp,項目名稱:OpenNE,代碼行數:23,代碼來源:hope.py

示例2: learn_embedding

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def learn_embedding(self):
        graph = self.g.G
        graph = graph.to_undirected()
        t1 = time()
        A = nx.to_scipy_sparse_matrix(graph)
        # print(np.sum(A.todense(), axis=0))
        normalize(A, norm='l1', axis=1, copy=False)
        I_n = sp.eye(graph.number_of_nodes())
        I_min_A = I_n - A
        print(I_min_A)
        u, s, vt = lg.svds(I_min_A, k=self._d + 1, which='SM')
        t2 = time()
        self._X = vt.T
        self._X = self._X[:, 1:]
        return self._X, (t2 - t1)
        # I_n = sp.eye(graph.number_of_nodes()) 
開發者ID:thunlp,項目名稱:OpenNE,代碼行數:18,代碼來源:lle.py

示例3: add_data

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def add_data(self, g, h, trn_graph, trn_x_index, trn_y_index, tst_graph, tst_x_index, tst_y_index, k=500,
                 pos_up_ratio=5.0):
        """
        """
        self.g = g                 # ng * ng
        self.h = h                 # nh * nh
        self.trn_graph = trn_graph # ng * nh (data are the corresponding instances)
        self.tst_graph = tst_graph # ng * nh (data are the corresponding instances)
        self.ng = g.shape[0]
        self.nh = h.shape[0]
        self.sym_g = self.gen_sym_graph(self.g)
        self.sym_h = self.gen_sym_graph(self.h)
        U, s, Vh = svdp(self.trn_graph, k=k)
        self.gX = U * np.sqrt(s)
        self.hX = Vh.T * np.sqrt(s)

        self.pos_trn_x_index, self.pos_trn_y_index = self.trn_graph.nonzero()
        self.trn_x_index, self.trn_y_index = trn_x_index, trn_y_index
        self.tst_x_index, self.tst_y_index = tst_x_index, tst_y_index
        self.pos_up_ratio = pos_up_ratio

        print 'bipartite shape:', trn_graph.shape
        print 'pos_num:', len(self.pos_trn_x_index)
        print 'total training:', len(self.trn_x_index)
        print 'pos_up_ratio:', self.pos_up_ratio 
開發者ID:CrickWu,項目名稱:GCMC,代碼行數:27,代碼來源:BGC_model.py

示例4: learn_embedding

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def learn_embedding(self, graph=None, edge_f=None,
                        is_weighted=False, no_python=False):
        if not graph and not edge_f:
            raise Exception('graph/edge_f needed')
        if not graph:
            graph = graph_util.loadGraphFromEdgeListTxt(edge_f)
        graph = graph.to_undirected()
        t1 = time()
        A = nx.to_scipy_sparse_matrix(graph)
        normalize(A, norm='l1', axis=1, copy=False)
        I_n = sp.eye(graph.number_of_nodes())
        I_min_A = I_n - A
        try:
            u, s, vt = lg.svds(I_min_A, k=self._d + 1, which='SM')
        except:
            u = np.random.randn(A.shape[0], self._d + 1)
            s = np.random.randn(self._d + 1, self._d + 1)
            vt = np.random.randn(self._d + 1, A.shape[0])
        t2 = time()
        self._X = vt.T
        self._X = self._X[:, 1:]
        return self._X, (t2 - t1) 
開發者ID:palash1992,項目名稱:GEM-Benchmark,代碼行數:24,代碼來源:lle.py

示例5: post_proC

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def post_proC(C, K, d, alpha):
    # C: coefficient matrix, K: number of clusters, d: dimension of each subspace
    C = 0.5*(C + C.T)
    r = min(d*K + 1, C.shape[0]-1)      
    U, S, _ = svds(C, r, v0=np.ones(C.shape[0]))
    U = U[:,::-1]    
    S = np.sqrt(S[::-1])
    S = np.diag(S)    
    U = U.dot(S)    
    U = normalize(U, norm='l2', axis = 1)       
    Z = U.dot(U.T)
    Z = Z * (Z>0)    
    L = np.abs(Z ** alpha) 
    L = L/L.max()   
    L = 0.5 * (L + L.T)    
    spectral = cluster.SpectralClustering(n_clusters=K, eigen_solver='arpack', affinity='precomputed', assign_labels='discretize', random_state=66)
    spectral.fit(L)
    grp = spectral.fit_predict(L) + 1
    return grp, L 
開發者ID:huybery,項目名稱:MvDSCN,代碼行數:21,代碼來源:metric.py

示例6: svddenseblock

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def svddenseblock(m, rbd='avg'):
    m = m.asfptype()
    u, s, vt = slin.svds(m, k=1, which='LM')
    u1 = u[:,0]
    v1 = vt[0,:]
    s1 = s[0]
    if abs(max(u1)) < abs(min(u1)):
        u1 = -1*u1
    if abs(max(v1)) < abs(min(v1)):
        v1 = -1*v1
    sqrtS1 = math.sqrt(s1)
    if type(rbd) is float:
       rows = ((sqrtS1*u1)>=rbd).astype(int)
       cols = ((sqrtS1*v1)>=rbd).astype(int)
    elif rbd == 'avg':
       nrow, ncol = m.shape
       rows = (u1>=1.0/math.sqrt(nrow)).astype(int)
       cols = (v1>=1.0/math.sqrt(ncol)).astype(int)
    #rows = np.round(sqrtS1*u1).astype(int)
    #cols = np.round(sqrtS1*v1).astype(int)
    return rows, cols 
開發者ID:shenghua-liu,項目名稱:HoloScope,代碼行數:23,代碼來源:svddenseblock.py

示例7: build

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def build(self, operator=None, return_factors='vh'):
        if operator is not None:
            svd_matrix = operator
        else:
            svd_matrix = self.get_training_matrix(dtype=np.float64)

        svd_params = dict(k=self.rank, return_singular_vectors=return_factors)

        with track_time(self.training_time, verbose=self.verbose, model=self.method):
            user_factors, sigma, item_factors = svds(svd_matrix, **svd_params)

        if user_factors is not None:
            user_factors = np.ascontiguousarray(user_factors[:, ::-1])
        if item_factors is not None:
            item_factors = np.ascontiguousarray(item_factors[::-1, :]).T
        if sigma is not None:
            sigma = np.ascontiguousarray(sigma[::-1])

        self.factors[self.data.fields.userid] = user_factors
        self.factors[self.data.fields.itemid] = item_factors
        self.factors['singular_values'] = sigma 
開發者ID:evfro,項目名稱:polara,代碼行數:23,代碼來源:models.py

示例8: learn_embedding

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def learn_embedding(self, graph=None, edge_f=None,
                        is_weighted=False, no_python=False):
        if not graph and not edge_f:
            raise Exception('graph/edge_f needed')
        if not graph:
            graph = graph_util.loadGraphFromEdgeListTxt(edge_f)
        graph = graph.to_undirected()
        t1 = time()
        A = nx.to_scipy_sparse_matrix(graph)
        normalize(A, norm='l1', axis=1, copy=False)
        I_n = sp.eye(len(graph.nodes))
        I_min_A = I_n - A
        u, s, vt = lg.svds(I_min_A, k=self._d + 1, which='SM')
        t2 = time()
        self._X = vt.T
        self._X = self._X[:, 1:]
        return self._X.real, (t2 - t1) 
開發者ID:palash1992,項目名稱:GEM,代碼行數:19,代碼來源:lle.py

示例9: SVD_embedding

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def SVD_embedding(G, output_filename, size=100):
    node_list = list(G.nodes())
    adjacency_matrix = nx.adjacency_matrix(G, node_list)
    adjacency_matrix = adjacency_matrix.astype(float)
    # adjacency_matrix = sparse.csc_matrix(adjacency_matrix)
    U, Sigma, VT = svds(adjacency_matrix, k=size)
    Sigma = np.diag(Sigma)
    W = np.matmul(U, np.sqrt(Sigma))
    C = np.matmul(VT.T, np.sqrt(Sigma))
    # print(np.sum(U))
    embeddings = W + C
    vectors = {}
    for id, node in enumerate(node_list):
        vectors[node] = list(np.array(embeddings[id]))

    fout = open(output_filename, 'w')
    node_num = len(vectors.keys())
    fout.write("{} {}\n".format(node_num, size))
    for node, vec in vectors.items():
        fout.write("{} {}\n".format(node,
                                    ' '.join([str(x) for x in vec])))
    fout.close()

    return 
開發者ID:xiangyue9607,項目名稱:BioNEV,代碼行數:26,代碼來源:model.py

示例10: fix_scipy_svds

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def fix_scipy_svds(scipy_svds):
    r"""
    scipy.sparse.linalg.svds orders the singular values in increasing order.
    This function flips this order.

    Parameters
    ----------
    scipy_svds: scipy.sparse.linalg.svds

    Returns
    -------
    U, D, V
    ordered in decreasing singular values
    """
    U, D, V = scipy_svds

    sv_reordering = np.argsort(-D)

    U = U[:, sv_reordering]
    D = D[sv_reordering]
    V = V.T[:, sv_reordering]

    return U, D, V 
開發者ID:neurodata,項目名稱:mvlearn,代碼行數:25,代碼來源:utils.py

示例11: _svd

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def _svd(self, array, n_components, n_discard):
        """Returns first `n_components` left and right singular
        vectors u and v, discarding the first `n_discard`.

        """
        if self.svd_method == 'randomized':
            kwargs = {}
            if self.n_svd_vecs is not None:
                kwargs['n_oversamples'] = self.n_svd_vecs
            u, _, vt = randomized_svd(array, n_components,
                                      random_state=self.random_state,
                                      **kwargs)

        elif self.svd_method == 'arpack':
            u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs)
            if np.any(np.isnan(vt)):
                # some eigenvalues of A * A.T are negative, causing
                # sqrt() to be np.nan. This causes some vectors in vt
                # to be np.nan.
                A = safe_sparse_dot(array.T, array)
                random_state = check_random_state(self.random_state)
                # initialize with [-1,1] as in ARPACK
                v0 = random_state.uniform(-1, 1, A.shape[0])
                _, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0)
                vt = v.T
            if np.any(np.isnan(u)):
                A = safe_sparse_dot(array, array.T)
                random_state = check_random_state(self.random_state)
                # initialize with [-1,1] as in ARPACK
                v0 = random_state.uniform(-1, 1, A.shape[0])
                _, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0)

        assert_all_finite(u)
        assert_all_finite(vt)
        u = u[:, n_discard:]
        vt = vt[n_discard:]
        return u, vt.T 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:39,代碼來源:bicluster.py

示例12: coil_compress

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def coil_compress(kspace, out_coils):
    if kspace.shape[0] <= out_coils:
        return kspace

    kspace = kspace.numpy()
    kspace = kspace[..., 0] + 1j * kspace[..., 1]

    start_shape = tuple(kspace.shape)
    in_coils = start_shape[0]
    kspace = kspace.reshape(in_coils, -1)
    try:
        if in_coils == 5:
            u, _, _ = svd(kspace, full_matrices=False)
        else:
            u, _, _ = svds(kspace, k=out_coils)
    except Exception as e:
        print("SVD failed: ", kspace.shape)
        traceback.print_exc(file=sys.stdout)
        raise e

    u = np.transpose(np.conj(u[:, :out_coils]))
    new_shape = (out_coils, ) + start_shape[1:]
    new_kspace = u @ kspace
    kspace = np.reshape(new_kspace, new_shape)

    kspace = torch.stack((torch.Tensor(np.real(kspace)), torch.Tensor(np.imag(kspace))), dim=-1)
    return kspace 
開發者ID:facebookresearch,項目名稱:fastMRI,代碼行數:29,代碼來源:transforms.py

示例13: _my_svd

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def _my_svd(M, k, algorithm):
    if algorithm == 'randomized':
        (U, S, V) = randomized_svd(
            M, n_components=min(k, M.shape[1]-1), n_oversamples=20)
    elif algorithm == 'arpack':
        (U, S, V) = svds(M, k=min(k, min(M.shape)-1))
        S = S[::-1]
        U, V = svd_flip(U[:, ::-1], V[::-1])
    else:
        raise ValueError("unknown algorithm")
    return (U, S, V) 
開發者ID:tonyduan,項目名稱:matrix-completion,代碼行數:13,代碼來源:svt_solver.py

示例14: __init__

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def __init__(self, DF, cols=None, ncols=None, benzecri=True, TOL=1e-4, 
		sparse=False, approximate=False):

		X, self.K, self.J = process_df(DF, cols, ncols)
		S = X.sum().sum()
		Z = X / S  # correspondence matrix
		self.r = Z.sum(axis=1)
		self.c = Z.sum()
		self.cor = benzecri

		eps = finfo(float).eps
		self.D_r = (diags if sparse else diag)(1/(eps + sqrt(self.r)))
		self.D_c = diag(1/(eps + sqrt(self.c)))  # can't use diags here
		Z_c = Z - outer(self.r, self.c)  # standardized residuals matrix

		product = self.D_r.dot(Z_c).dot(self.D_c)
		if sparse:
			P, s, Q = svds(product, min(product.shape)-1 if ncols is None else ncols)
			# svds and svd use complementary orders
			self.P = P.T[::-1].T
			self.Q = Q[::-1]
			self.s = s[::-1]
			self._numitems = min(product.shape)-1
		else:
			self._numitems = len(DF)
			self.P, self.s, self.Q = svd(product)

		self.E = None
		E = self._benzecri() if self.cor else self.s**2
		self.inertia = sum(E)
		self.rank = argmax(E < TOL)
		if not self.rank: self.rank = len(E)
		self.L = E[:self.rank] 
開發者ID:esafak,項目名稱:mca,代碼行數:35,代碼來源:mca.py

示例15: _svd

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import svds [as 別名]
def _svd(cls, matrix, num_concepts=5):
        """
        Perform singular value decomposition for dimensionality reduction of the input matrix.
        """
        u, s, v = svds(matrix, k=num_concepts)
        return u, s, v 
開發者ID:jaijuneja,項目名稱:PyTLDR,代碼行數:8,代碼來源:lsa.py


注:本文中的scipy.sparse.linalg.svds方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。