本文整理匯總了Python中scipy.sparse.linalg.spsolve方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.spsolve方法的具體用法?Python linalg.spsolve怎麽用?Python linalg.spsolve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.spsolve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_set_up_tms
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def test_set_up_tms(self, tms_sphere):
m, cond, dAdt, E_analytical = tms_sphere
S = fem.FEMSystem.tms(m, cond)
b = S.assemble_tms_rhs(dAdt)
x = spalg.spsolve(S.A, b)
v = mesh_io.NodeData(x, 'FEM', mesh=m)
E = -v.gradient().value * 1e3 - dAdt.node_data2elm_data().value
m.elmdata = [mesh_io.ElementData(E_analytical, 'analytical'),
mesh_io.ElementData(E, 'E_FEM'),
mesh_io.ElementData(E_analytical + dAdt.node_data2elm_data().value, 'grad_analytical'),
dAdt]
m.nodedata = [mesh_io.NodeData(x, 'FEM')]
#mesh_io.write_msh(m, '~/Tests/fem.msh')
assert rdm(E, E_analytical) < .2
assert np.abs(mag(E, E_analytical)) < np.log(1.1)
示例2: test_dirichlet_problem_cube
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def test_dirichlet_problem_cube(self, cube_lr):
m = cube_lr.crop_mesh(5)
cond = np.ones(len(m.elm.tetrahedra))
top = m.nodes.node_number[m.nodes.node_coord[:, 2] > 49]
bottom = m.nodes.node_number[m.nodes.node_coord[:, 2] < -49]
bcs = [fem.DirichletBC(top, np.ones(len(top))),
fem.DirichletBC(bottom, -np.ones(len(bottom)))]
S = fem.FEMSystem(m, cond)
A = S.A
b = np.zeros(m.nodes.nr)
dof_map = S.dof_map
for bc in bcs:
A, b, dof_map = bc.apply(A, b, dof_map)
x = spalg.spsolve(A, b)
for bc in bcs:
x, dof_map = bc.apply_to_solution(x, dof_map)
order = dof_map.inverse.argsort()
x = x[order]
sol = m.nodes.node_coord[:, 2]/50.
assert np.allclose(sol, x.T)
示例3: solve
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve ( self, A, b ):
if len(A.shape) == 2:
C = self.getConstraintsMatrix()
a = zeros(len(self))
a[self.constrainedDofs] = self.constrainedFac * array(self.constrainedVals)
A_constrained = C.transpose() * (A * C )
b_constrained = C.transpose()* ( b - A * a )
x_constrained = spsolve( A_constrained, b_constrained )
x = C * x_constrained
x[self.constrainedDofs] = self.constrainedFac * array(self.constrainedVals)
elif len(A.shape) == 1:
x = b / A
x[self.constrainedDofs] = self.constrainedFac * array(self.constrainedVals)
return x
示例4: solve
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve(self):
shape = self.bcs.shape
if self._L is None:
self._L = self.lhs.matrix(shape) # expensive operation, so cache it
L = sparse.lil_matrix(self._L)
f = self.rhs.reshape(-1, 1)
nz = list(self.bcs.row_inds())
L[nz, :] = self.bcs.lhs[nz, :]
f[nz] = np.array(self.bcs.rhs[nz].toarray()).reshape(-1, 1)
L = sparse.csr_matrix(L)
return spsolve(L, f).reshape(shape)
示例5: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self,rhs,factor,u0,t):
"""
Simple linear solver for (I-dtA)u = rhs
Args:
rhs: right-hand side for the nonlinear system
factor: abbrev. for the node-to-node stepsize (or any other factor required)
u0: initial guess for the iterative solver (not used here so far)
t: current time (e.g. for time-dependent BCs)
Returns:
solution as mesh
"""
me = mesh(self.nvars)
me.values = LA.spsolve(sp.eye(self.nvars)-factor*self.A,rhs.values)
return me
示例6: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self,rhs,factor,u0,t):
"""
Simple linear solver for (I-dtA)u = rhs
Args:
rhs: right-hand side for the nonlinear system
factor: abbrev. for the node-to-node stepsize (or any other factor required)
u0: initial guess for the iterative solver (not used here so far)
t: current time (e.g. for time-dependent BCs)
Returns:
solution as mesh
"""
M = self.Id - factor*self.A
b = np.concatenate( (rhs.values[0,:], rhs.values[1,:]) )
sol = LA.spsolve(M, b)
me = mesh(self.nvars)
me.values[0,:], me.values[1,:] = np.split(sol, 2)
return me
示例7: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self,rhs,factor,u0,t):
"""
Simple linear solver for (I-dtA)u = rhs
Args:
rhs: right-hand side for the nonlinear system
factor: abbrev. for the node-to-node stepsize (or any other factor required)
u0: initial guess for the iterative solver (not used here so far)
t: current time (e.g. for time-dependent BCs)
Returns:
solution as mesh
"""
me = mesh(self.nvars)
me.values = LA.spsolve(sp.eye(self.nvars)-factor*self.A,rhs.values)
return me
示例8: solve_system_jacobian
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system_jacobian(self, dfdu, rhs, factor, u0, t):
"""
Simple linear solver for (I-dtA)u = rhs
Args:
dfdu: the Jacobian of the RHS of the ODE
rhs: right-hand side for the linear system
factor: abbrev. for the node-to-node stepsize (or any other factor required)
u0: initial guess for the iterative solver (not used here so far)
t: current time (e.g. for time-dependent BCs)
Returns:
solution as mesh
"""
me = self.dtype_u(self.init)
me.values = spsolve(sp.eye(self.params.nvars) - factor * dfdu, rhs.values)
return me
示例9: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
me = self.dtype_u(self.init)
if self.params.direct_solver:
me.values = spsolve(self.Id - factor * self.A, rhs.values.flatten())
else:
me.values = gmres(self.Id - factor * self.A, rhs.values.flatten(), x0=u0.values.flatten(),
tol=self.params.lintol, maxiter=self.params.liniter)[0]
me.values = me.values.reshape(self.params.nvars)
return me
示例10: timestep
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def timestep(self, u0, dt):
# Solve for stages
for i in range(0, self.nstages):
# Construct RHS
rhs = np.copy(u0)
for j in range(0, i):
rhs += dt * self.A_hat[i, j] * (self.f_slow(self.stages[j, :])) + dt * self.A[i, j] * \
(self.f_fast(self.stages[j, :]))
# Solve for stage i
if self.A[i, i] == 0:
# Avoid call to spsolve with identity matrix
self.stages[i, :] = np.copy(rhs)
else:
self.stages[i, :] = self.f_fast_solve(rhs, dt * self.A[i, i])
# Update
for i in range(0, self.nstages):
u0 += dt * self.b_hat[i] * (self.f_slow(self.stages[i, :])) + dt * self.b[i] * \
(self.f_fast(self.stages[i, :]))
return u0
示例11: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-dtA)u = rhs
Args:
rhs (dtype_f): right-hand side for the nonlinear system
factor (float): abbrev. for the node-to-node stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver (not used here so far)
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
M = self.Id - factor * self.A
b = np.concatenate((rhs.values[0, :], rhs.values[1, :]))
sol = spsolve(M, b)
me = self.dtype_u(self.init)
me.values[0, :], me.values[1, :] = np.split(sol, 2)
return me
示例12: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
me = self.dtype_u(self.init)
self.uext.values[0] = 0.0
self.uext.values[-1] = 0.0
self.uext.values[1:-1] = rhs.values[:]
me.values = spsolve(sp.eye(self.params.nvars + 2, format='csc') - factor * self.A, self.uext.values)[1:-1]
# me.values = spsolve(sp.eye(self.params.nvars, format='csc') - factor * self.A[1:-1, 1:-1], rhs.values)
return me
示例13: solve_system_1
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system_1(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
me = self.dtype_u(u0)
me.values = spsolve(sp.eye(self.params.nvars, format='csc') - factor * self.A, rhs.values)
return me
示例14: solve_system
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_system(self, rhs, factor, u0, t):
"""
Simple linear solver for (I-factor*A)u = rhs
Args:
rhs (dtype_f): right-hand side for the linear system
factor (float): abbrev. for the local stepsize (or any other factor required)
u0 (dtype_u): initial guess for the iterative solver
t (float): current time (e.g. for time-dependent BCs)
Returns:
dtype_u: solution as mesh
"""
me = self.dtype_u(self.init)
me.values = spsolve(sp.eye(self.params.nvars, format='csc') - factor * self.A, rhs.values)
return me
示例15: solve_direct_lagrange
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spsolve [as 別名]
def solve_direct_lagrange(k_lg, f):
"""Solves a linear system of equations (Ku = f) using the direct solver method and the
Lagrangian multiplier method.
:param k: (N+1) x (N+1) Lagrangian multiplier matrix of the linear system
:type k: :class:`scipy.sparse.csc_matrix`
:param f: N x 1 right hand side of the linear system
:type f: :class:`numpy.ndarray`
:return: The solution vector to the linear system of equations
:rtype: :class:`numpy.ndarray`
:raises RuntimeError: If the Lagrangian multiplier method exceeds a tolerance of 1e-5
"""
u = spsolve(k_lg, np.append(f, 0))
# compute error
err = u[-1] / max(np.absolute(u))
if err > 1e-5:
err = "Lagrangian multiplier method error exceeds tolerance of 1e-5."
raise RuntimeError(err)
return u[:-1]