本文整理匯總了Python中scipy.sparse.linalg.spilu方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.spilu方法的具體用法?Python linalg.spilu怎麽用?Python linalg.spilu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.spilu方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: GetPreconditioner
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def GetPreconditioner(self,A, type="amg_smoothed_aggregation"):
"""Applies a suitable preconditioner to sparse matrix A
based on algebraic multigrid of incomplete LU/Cholesky factorisation
input:
A: [csc_matrix or csc_matrix]
type: [str] either "amg_smoothed_aggregation" for
a preconditioner based on algebraic multigrid
or "incomplete_lu" for scipy's spilu linear
operator
returns: A preconditioner that can be used in conjunction
with scipy's sparse linear iterative solvers
(the M keyword in scipy's iterative solver)
"""
if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
raise TypeError("Matrix must be in CSC or CSR sparse format for preconditioning")
ml = smoothed_aggregation_solver(A)
return ml.aspreconditioner()
示例2: SetSolver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
geometric_discretisation=None):
"""
input:
linear_solver: [str] type of solver either "direct",
"iterative", "petsc" or "amg"
linear_solver_type [str] type of direct or linear solver to
use, for instance "umfpack", "superlu" or
"mumps" for direct solvers, or "cg", "gmres"
etc for iterative solvers or "amg" for algebraic
multigrid solver. See WhichSolvers method for
the complete set of available linear solvers
preconditioner: [str] either "smoothed_aggregation",
or "ruge_stuben" or "rootnode" for
a preconditioner based on algebraic multigrid
or "ilu" for scipy's spilu linear
operator
geometric_discretisation:
[str] type of geometric discretisation used, for
instance for FEM discretisations this would correspond
to "tri", "quad", "tet", "hex" etc
"""
self.solver_type = linear_solver
self.solver_subtype = "umfpack"
self.iterative_solver_tolerance = iterative_solver_tolerance
self.apply_preconditioner = apply_preconditioner
self.requires_cuthill_mckee = reduce_matrix_bandwidth
self.geometric_discretisation = geometric_discretisation
示例3: __init__
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def __init__(self, vs):
self._matrix = self._assemble_poisson_matrix(vs)
jacobi_precon = self._jacobi_preconditioner(vs, self._matrix)
self._matrix = jacobi_precon * self._matrix
self._rhs_scale = jacobi_precon.diagonal()
self._extra_args = {}
logger.info('Computing ILU preconditioner...')
ilu_preconditioner = spalg.spilu(self._matrix.tocsc(), drop_tol=1e-6, fill_factor=100)
self._extra_args['M'] = spalg.LinearOperator(self._matrix.shape, ilu_preconditioner.solve)
示例4: __init__
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def __init__(self,
A,
drop_tol=0.005,
fill_factor=2.0,
normalize_inplace=False):
# the spilu and gmres functions are most efficient with csc sparse. If the
# matrix is already csc then this will do nothing
A = sp.csc_matrix(A)
n = row_norms(A)
if normalize_inplace:
divide_rows(A, n, inplace=True)
else:
A = divide_rows(A, n, inplace=False).tocsc()
LOGGER.debug(
'computing the ILU decomposition of a %s by %s sparse matrix with %s '
'nonzeros ' % (A.shape + (A.nnz,)))
ilu = spla.spilu(
A,
drop_rule='basic',
drop_tol=drop_tol,
fill_factor=fill_factor)
LOGGER.debug('done')
M = spla.LinearOperator(A.shape, ilu.solve)
self.A = A
self.M = M
self.n = n
示例5: init_solver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def init_solver(self,L):
global linalg
from scipy.sparse import linalg
ilu= linalg.spilu(self.L1.tocsc())
n=self.n-1
self.M = linalg.LinearOperator(shape=(n,n), matvec=ilu.solve)
示例6: init_solver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def init_solver(self, L):
global linalg
from scipy.sparse import linalg
ilu = linalg.spilu(self.L1.tocsc())
n = self.n - 1
self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)
示例7: ilu_linsolver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def ilu_linsolver(A, b):
"""
ILU wrapper function for linear system solve A x = b
:param A: System matrix
:param b: right hand side
:return: solution
"""
return spilu(A).solve(b)
示例8: init_solver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import spilu [as 別名]
def init_solver(self, L):
global linalg
from scipy.sparse import linalg
ilu = linalg.spilu(self.L1.tocsc())
n = self.n-1
self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)