當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.norm方法代碼示例

本文整理匯總了Python中scipy.sparse.linalg.norm方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.norm方法的具體用法?Python linalg.norm怎麽用?Python linalg.norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.linalg的用法示例。


在下文中一共展示了linalg.norm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: frobeniusnorm

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def frobeniusnorm(ar):
    """
    Compute the frobenius norm of an array (or matrix),

       sqrt( sum( each_element_of_a^2 ) )

    Parameters
    ----------
    ar : numpy array
        What to compute the frobenius norm of.  Note that ar can be any shape
        or number of dimenions.

    Returns
    -------
    float or complex
        depending on the element type of ar.
    """
    return _np.sqrt(_np.sum(ar**2)) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:20,代碼來源:matrixtools.py

示例2: frobeniusnorm2

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def frobeniusnorm2(ar):
    """
    Compute the squared frobenius norm of an array (or matrix),

       sum( each_element_of_a^2 ) )

    Parameters
    ----------
    ar : numpy array
        What to compute the squared frobenius norm of.  Note that ar can be any
        shape or number of dimenions.

    Returns
    -------
    float or complex
        depending on the element type of ar.
    """
    return _np.sum(ar**2) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:20,代碼來源:matrixtools.py

示例3: norm1to1

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def norm1to1(operator, n_samples=10000, mxBasis="gm", return_list=False):
    """
    Returns the Hermitian 1-to-1 norm of a superoperator represented in
    the standard basis, calculated via Monte-Carlo sampling. Definition
    of Hermitian 1-to-1 norm can be found in arxiv:1109.6887.
    """
    if mxBasis == 'gm':
        std_operator = change_basis(operator, 'gm', 'std')
    elif mxBasis == 'pp':
        std_operator = change_basis(operator, 'pp', 'std')
    elif mxBasis == 'std':
        std_operator = operator
    else:
        raise ValueError("mxBasis should be 'gm', 'pp' or 'std'!")

    rand_dim = int(_np.sqrt(float(len(std_operator))))
    vals = [norm1(unvec(_np.dot(std_operator, vec(random_hermitian(rand_dim)))))
            for n in range(n_samples)]
    if return_list:
        return vals
    else:
        return max(vals)


## ------------------------ General utility fns ----------------------------------- 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:27,代碼來源:matrixtools.py

示例4: safe_onenorm

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def safe_onenorm(A):
    """
    Computes the 1-norm of the dense or sparse matrix `A`.

    Parameters
    ----------
    A : ndarray or sparse matrix
        The matrix or vector to take the norm of.

    Returns
    -------
    float
    """
    if _sps.isspmatrix(A):
        return sparse_onenorm(A)
    else:
        return _np.linalg.norm(A, 1) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:19,代碼來源:matrixtools.py

示例5: tracenorm

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def tracenorm(A):
    """
    Compute the trace norm of matrix A given by:

      Tr( sqrt{ A^dagger * A } )

    Parameters
    ----------
    A : numpy array
        The matrix to compute the trace norm of.
    """
    if _np.linalg.norm(A - _np.conjugate(A.T)) < 1e-8:
        #Hermitian, so just sum eigenvalue magnitudes
        return _np.sum(_np.abs(_np.linalg.eigvals(A)))
    else:
        #Sum of singular values (positive by construction)
        return _np.sum(_np.linalg.svd(A, compute_uv=False)) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:19,代碼來源:optools.py

示例6: compute_pri_tol

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def compute_pri_tol(self, eps_abs, eps_rel):
        """
        Compute primal tolerance using problem data
        """
        A = self.work.data.A
        if self.work.settings.scaling and not \
                self.work.settings.scaled_termination:
            Einv = self.work.scaling.Einv
            max_rel_eps = np.max([
                la.norm(Einv.dot(A.dot(self.work.x)), np.inf),
                la.norm(Einv.dot(self.work.z), np.inf)])
        else:
            max_rel_eps = np.max([
                la.norm(A.dot(self.work.x), np.inf),
                la.norm(self.work.z, np.inf)])

        eps_pri = eps_abs + eps_rel * max_rel_eps

        return eps_pri 
開發者ID:oxfordcontrol,項目名稱:osqp-python,代碼行數:21,代碼來源:_osqp.py

示例7: compute_dua_tol

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def compute_dua_tol(self, eps_abs, eps_rel):
        """
        Compute dual tolerance
        """
        P = self.work.data.P
        q = self.work.data.q
        A = self.work.data.A
        if self.work.settings.scaling and not \
                self.work.settings.scaled_termination:
            cinv = self.work.scaling.cinv
            Dinv = self.work.scaling.Dinv
            max_rel_eps = cinv * np.max([
                la.norm(Dinv.dot(A.T.dot(self.work.y)), np.inf),
                la.norm(Dinv.dot(P.dot(self.work.x)), np.inf),
                la.norm(Dinv.dot(q), np.inf)])
        else:
            max_rel_eps = np.max([
                la.norm(A.T.dot(self.work.y), np.inf),
                la.norm(P.dot(self.work.x), np.inf),
                la.norm(q, np.inf)])

        eps_dua = eps_abs + eps_rel * max_rel_eps

        return eps_dua 
開發者ID:oxfordcontrol,項目名稱:osqp-python,代碼行數:26,代碼來源:_osqp.py

示例8: compute_rho_estimate

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def compute_rho_estimate(self):
        # Iterates
        x = self.work.x
        y = self.work.y
        z = self.work.z

        # Problem data
        P = self.work.data.P
        q = self.work.data.q
        A = self.work.data.A

        # Compute normalized residuals
        pri_res = la.norm(A.dot(x) - z, np.inf)
        pri_res /= (np.max([la.norm(A.dot(x), np.inf),
                            la.norm(z, np.inf)]) + 1e-10)
        dua_res = la.norm(P.dot(x) + q + A.T.dot(y), np.inf)
        dua_res /= (np.max([la.norm(A.T.dot(y), np.inf),
                           la.norm(P.dot(x), np.inf),
                           la.norm(q, np.inf)]) + 1e-10)

        # Compute new rho
        new_rho = self.work.settings.rho * np.sqrt(pri_res/(dua_res + 1e-10))
        return min(max(new_rho, RHO_MIN), RHO_MAX) 
開發者ID:oxfordcontrol,項目名稱:osqp-python,代碼行數:25,代碼來源:_osqp.py

示例9: _similarity

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def _similarity(self, q_vect: Union[csr_matrix, List]) -> List[float]:
        """Calculates cosine similarity between the user's query and product items.

        Parameters:
            q_cur: user's query

        Returns:
            cos_similarities: lits of similarity scores
        """

        norm = sparse_norm(q_vect) * sparse_norm(self.x_train_features, axis=1)
        cos_similarities = np.array(q_vect.dot(self.x_train_features.T).todense()) / norm

        cos_similarities = cos_similarities[0]
        cos_similarities = np.nan_to_num(cos_similarities)
        return cos_similarities 
開發者ID:deepmipt,項目名稱:DeepPavlov,代碼行數:18,代碼來源:tfidf_retrieve.py

示例10: array_eq

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def array_eq(a, b, tol=1e-8):
    """Test whether arrays `a` and `b` are equal, i.e. if `norm(a-b) < tol` """
    print(_np.linalg.norm(a - b))
    return _np.linalg.norm(a - b) < tol 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:6,代碼來源:matrixtools.py

示例11: nullspace_qr

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def nullspace_qr(m, tol=1e-7):
    """
    Compute the nullspace of a matrix using the QR decomposition.

    The QR decomposition is faster but less accurate than the SVD
    used by :func:`nullspace`.

    Parameters
    ----------
    m : numpy array
       An matrix of shape (M,N) whose nullspace to compute.

    tol : float (optional)
       Nullspace tolerance, used when comparing diagonal values of R with zero.

    Returns
    -------
    An matrix of shape (M,K) whose columns contain nullspace basis vectors.
    """
    #if M,N = m.shape, and q,r,p = _spl.qr(...)
    # q.shape == (N,N), r.shape = (N,M), p.shape = (M,)
    q, r, _ = _spl.qr(m.T, mode='full', pivoting=True)
    rank = (_np.abs(_np.diagonal(r)) > tol).sum()

    #DEBUG: requires q,r,p = _sql.qr(...) above
    #assert( _np.linalg.norm(_np.dot(q,r) - m.T[:,p]) < 1e-8) #check QR decomp
    #print("Rank QR = ",rank)
    #print('\n'.join(map(str,_np.abs(_np.diagonal(r)))))
    #print("Ret = ", q[:,rank:].shape, " Q = ",q.shape, " R = ",r.shape)

    return q[:, rank:] 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:33,代碼來源:matrixtools.py

示例12: unitary_superoperator_matrix_log

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def unitary_superoperator_matrix_log(M, mxBasis):
    """
    Construct the logarithm of superoperator matrix `M`
    that acts as a unitary on density-matrix space,
    (`M: rho -> U rho Udagger`) so that log(M) can be
    written as the action by Hamiltonian `H`:
    `log(M): rho -> -i[H,rho]`.


    Parameters
    ----------
    M : numpy array
        The superoperator matrix whose logarithm is taken

    mxBasis : {'std', 'gm', 'pp', 'qt'} or Basis object
        The source and destination basis, respectively.  Allowed
        values are Matrix-unit (std), Gell-Mann (gm), Pauli-product (pp),
        and Qutrit (qt) (or a custom basis object).

    Returns
    -------
    numpy array
        A matrix `logM`, of the same shape as `M`, such that `M = exp(logM)`
        and `logM` can be written as the action `rho -> -i[H,rho]`.
    """
    from . import lindbladtools as _lt  # (would create circular imports if at top)
    from . import optools as _gt  # (would create circular imports if at top)

    M_std = change_basis(M, mxBasis, "std")
    evals = _np.linalg.eigvals(M_std)
    assert(_np.allclose(_np.abs(evals), 1.0))  # simple but technically incomplete check for a unitary superop
    # (e.g. could be anti-unitary: diag(1, -1, -1, -1))
    U = _gt.process_mx_to_unitary(M_std)
    H = _spl.logm(U) / -1j  # U = exp(-iH)
    logM_std = _lt.hamiltonian_to_lindbladian(H)  # rho --> -i[H, rho] * sqrt(d)/2
    logM = change_basis(logM_std * (2.0 / _np.sqrt(H.shape[0])), "std", mxBasis)
    assert(_np.linalg.norm(_spl.expm(logM) - M) < 1e-8)  # expensive b/c of expm - could comment for performance
    return logM 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:40,代碼來源:matrixtools.py

示例13: norm1

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def norm1(matr):
    """
    Returns the 1 norm of a matrix
    """
    return float(_np.real(_np.trace(_sqrtm(_np.dot(matr.conj().T, matr))))) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:7,代碼來源:matrixtools.py

示例14: safenorm

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def safenorm(A, part=None):
    """
    Returns the frobenius norm of a matrix or vector, `A` when it is either
    a dense array or a sparse matrix.

    Parameters
    ----------
    A : ndarray or sparse matrix
        The matrix or vector to take the norm of.

    part : {None,'real','imag'}
        If not None, return the norm of the real or imaginary
        part of `A`.

    Returns
    -------
    float
    """
    if part == 'real': takepart = _np.real
    elif part == 'imag': takepart = _np.imag
    else: takepart = lambda x: x
    if _sps.issparse(A):
        assert(_sps.isspmatrix_csr(A)), "Non-CSR sparse formats not implemented"
        return _np.linalg.norm(takepart(A.data))
    else:
        return _np.linalg.norm(takepart(A))
    # could also use _spsl.norm(A) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:29,代碼來源:matrixtools.py

示例15: sparse_onenorm

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import norm [as 別名]
def sparse_onenorm(A):
    """
    Computes the 1-norm of the scipy sparse matrix `A`.

    Parameters
    ----------
    A : scipy sparse matrix
        The matrix or vector to take the norm of.

    Returns
    -------
    float
    """
    return max(abs(A).sum(axis=0).flat) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:16,代碼來源:matrixtools.py


注:本文中的scipy.sparse.linalg.norm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。