本文整理匯總了Python中scipy.sparse.linalg.lobpcg方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.lobpcg方法的具體用法?Python linalg.lobpcg怎麽用?Python linalg.lobpcg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.lobpcg方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: solveEigenspace
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def solveEigenspace(x, m = 2):
k = numpy.random.uniform(.5, 1.0, (len(neighborhoods),m))
for ix in range(20):
t0 = time.time()
res = lobpcg(x,k,largest=False,maxiter=50)
k = res[1]
return res
示例2: _get_fiedler_func
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def _get_fiedler_func(method):
"""Return a function that solves the Fiedler eigenvalue problem.
"""
match = _tracemin_method.match(method)
if match:
method = match.group(1)
def find_fiedler(L, x, normalized, tol):
q = 2 if method == 'pcg' else min(4, L.shape[0] - 1)
X = asmatrix(normal(size=(q, L.shape[0]))).T
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
return sigma[0], X[:, 0]
elif method == 'lanczos' or method == 'lobpcg':
def find_fiedler(L, x, normalized, tol):
L = csc_matrix(L, dtype=float)
n = L.shape[0]
if normalized:
D = spdiags(1. / sqrt(L.diagonal()), [0], n, n, format='csc')
L = D * L * D
if method == 'lanczos' or n < 10:
# Avoid LOBPCG when n < 10 due to
# https://github.com/scipy/scipy/issues/3592
# https://github.com/scipy/scipy/pull/3594
sigma, X = eigsh(L, 2, which='SM', tol=tol,
return_eigenvectors=True)
return sigma[1], X[:, 1]
else:
X = asarray(asmatrix(x).T)
M = spdiags(1. / L.diagonal(), [0], n, n)
Y = ones(n)
if normalized:
Y /= D.diagonal()
sigma, X = lobpcg(L, X, M=M, Y=asmatrix(Y).T, tol=tol,
maxiter=n, largest=False)
return sigma[0], X[:, 0]
else:
raise nx.NetworkXError("unknown method '%s'." % method)
return find_fiedler
示例3: _get_fiedler_func
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def _get_fiedler_func(method):
"""Returns a function that solves the Fiedler eigenvalue problem.
"""
if method == "tracemin": # old style keyword <v2.1
method = "tracemin_pcg"
if method in ("tracemin_pcg", "tracemin_chol", "tracemin_lu"):
def find_fiedler(L, x, normalized, tol, seed):
q = 1 if method == 'tracemin_pcg' else min(4, L.shape[0] - 1)
X = asmatrix(seed.normal(size=(q, L.shape[0]))).T
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
return sigma[0], X[:, 0]
elif method == 'lanczos' or method == 'lobpcg':
def find_fiedler(L, x, normalized, tol, seed):
L = csc_matrix(L, dtype=float)
n = L.shape[0]
if normalized:
D = spdiags(1. / sqrt(L.diagonal()), [0], n, n, format='csc')
L = D * L * D
if method == 'lanczos' or n < 10:
# Avoid LOBPCG when n < 10 due to
# https://github.com/scipy/scipy/issues/3592
# https://github.com/scipy/scipy/pull/3594
sigma, X = eigsh(L, 2, which='SM', tol=tol,
return_eigenvectors=True)
return sigma[1], X[:, 1]
else:
X = asarray(asmatrix(x).T)
M = spdiags(1. / L.diagonal(), [0], n, n)
Y = ones(n)
if normalized:
Y /= D.diagonal()
sigma, X = lobpcg(L, X, M=M, Y=asmatrix(Y).T, tol=tol,
maxiter=n, largest=False)
return sigma[0], X[:, 0]
else:
raise nx.NetworkXError("unknown method '%s'." % method)
return find_fiedler
示例4: _get_fiedler_func
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def _get_fiedler_func(method):
"""Return a function that solves the Fiedler eigenvalue problem.
"""
match = _tracemin_method.match(method)
if match:
method = match.group(1)
def find_fiedler(L, x, normalized, tol):
q = 2 if method == 'pcg' else min(4, L.shape[0] - 1)
X = asmatrix(normal(size=(q, L.shape[0]))).T
sigma, X = _tracemin_fiedler(L, X, normalized, tol, method)
return sigma[0], X[:, 0]
elif method == 'lanczos' or method == 'lobpcg':
def find_fiedler(L, x, normalized, tol):
L = csc_matrix(L, dtype=float)
n = L.shape[0]
if normalized:
D = spdiags(1. / sqrt(L.diagonal()), [0], n, n, format='csc')
L = D * L * D
if method == 'lanczos' or n < 10:
# Avoid LOBPCG when n < 10 due to
# https://github.com/scipy/scipy/issues/3592
# https://github.com/scipy/scipy/pull/3594
sigma, X = eigsh(L, 2, which='SM', tol=tol,
return_eigenvectors=True)
return sigma[1], X[:, 1]
else:
X = asarray(asmatrix(x).T)
M = spdiags(1. / L.diagonal(), [0], n, n)
Y = ones(n)
if normalized:
Y /= D.diagonal()
sigma, X = lobpcg(L, X, M=M, Y=asmatrix(Y).T, tol=tol,
maxiter=n, largest=False)
return sigma[0], X[:, 0]
else:
raise nx.NetworkXError("unknown method '%s'." % method)
return find_fiedler
示例5: solveSimply
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def solveSimply(AOrig,DOrig):
AD = (AOrig+DOrig).tocsr()
A = AOrig.tocsr()
D = -1.0 / DOrig.diagonal()
x = numpy.random.uniform(0, 1.0, (len(neighborhoods), 1))
x = normalizeAndDemean(x)
xSimple = x
errors = []
separation = []
def sep(x):
low = x[:len(neighborhoods)/2,0]
high = x[len(neighborhoods)/2:,0]
return abs((high.mean() - low.mean())/numpy.std(x))
elapsed = 0.0
elapsedSimple = 0.0
for passIx in range(10):
t0 = time.time()
for ix in range(400):
x = updateSingleLOBPCG(AD, x)
elapsed += time.time() - t0
t0 = time.time()
for ix in range(100):
xSimple = updateByAveragingAndStepping(A, D, xSimple)
elapsedSimple += time.time() - t0
print "LOBPCG-2 method: ", elapsed, " with error ", error(AD, x)
print "Simple method: ", elapsedSimple, " with error ", error(AD, xSimple)
eigenT0 = time.time()
eigenstyle = flip(solveEigenspace(AD,2)[1][:,1].reshape((len(neighborhoods),1)))
eigenElapsed = time.time() - eigenT0
print "Eigen: ", eigenElapsed, " with error ", error(AD, eigenstyle)
plt.plot(flip(x),label="lobpcg-2")
plt.plot(flip(xSimple),label="averaging")
plt.plot(eigenstyle,label="eigenvector")
plt.legend()
plt.show()
示例6: check_eigen_solver
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import lobpcg [as 別名]
def check_eigen_solver(eigen_solver, solver_kwds, size=None, nvec=None):
"""Check that the selected eigensolver is valid
Parameters
----------
eigen_solver : string
string value to validate
size, nvec : int (optional)
if both provided, use the specified problem size and number of vectors
to determine the optimal method to use with eigen_solver='auto'
Returns
-------
eigen_solver : string
The eigen solver. This only differs from the input if
eigen_solver == 'auto' and `size` is specified.
"""
if eigen_solver in BAD_EIGEN_SOLVERS:
raise ValueError(BAD_EIGEN_SOLVERS[eigen_solver])
elif eigen_solver not in EIGEN_SOLVERS:
raise ValueError("Unrecognized eigen_solver: '{0}'."
"Should be one of: {1}".format(eigen_solver,
EIGEN_SOLVERS))
if size is not None and nvec is not None:
# do some checks of the eigensolver
if eigen_solver == 'lobpcg' and size < 5 * nvec + 1:
warnings.warn("lobpcg does not perform well with small matrices or "
"with large numbers of vectors. Switching to 'dense'")
eigen_solver = 'dense'
solver_kwds = None
elif eigen_solver == 'auto':
if size > 200 and nvec < 10:
if PYAMG_LOADED:
eigen_solver = 'amg'
solver_kwds = None
else:
eigen_solver = 'arpack'
solver_kwds = None
else:
eigen_solver = 'dense'
solver_kwds = None
return eigen_solver, solver_kwds