本文整理匯總了Python中scipy.sparse.linalg.interface.LinearOperator方法的典型用法代碼示例。如果您正苦於以下問題:Python interface.LinearOperator方法的具體用法?Python interface.LinearOperator怎麽用?Python interface.LinearOperator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg.interface
的用法示例。
在下文中一共展示了interface.LinearOperator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def __init__(self, ops, dtype=None):
self.ops = ops
mops = np.zeros(len(ops), dtype=np.int)
nops = np.zeros(len(ops), dtype=np.int)
for iop, oper in enumerate(ops):
if not isinstance(oper, (LinearOperator, spLinearOperator)):
self.ops[iop] = MatrixMult(oper, dtype=oper.dtype)
nops[iop] = self.ops[iop].shape[0]
mops[iop] = self.ops[iop].shape[1]
self.nops = nops.sum()
self.mops = mops.sum()
self.nnops = np.insert(np.cumsum(nops), 0, 0)
self.mmops = np.insert(np.cumsum(mops), 0, 0)
self.shape = (self.nops, self.mops)
if dtype is None:
self.dtype = _get_dtype(ops)
else:
self.dtype = np.dtype(dtype)
self.explicit = False
示例2: __init__
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def __init__(self, ops, dtype=None):
self.ops = ops
nops = np.zeros(len(self.ops), dtype=np.int)
for iop, oper in enumerate(ops):
if not isinstance(oper, (LinearOperator, spLinearOperator)):
self.ops[iop] = MatrixMult(oper, dtype=oper.dtype)
nops[iop] = self.ops[iop].shape[0]
self.nops = nops.sum()
mops = [oper.shape[1] for oper in self.ops]
if len(set(mops)) > 1:
raise ValueError('operators have different number of columns')
self.mops = mops[0]
self.nnops = np.insert(np.cumsum(nops), 0, 0)
self.shape = (self.nops, self.mops)
if dtype is None:
self.dtype = _get_dtype(self.ops)
else:
self.dtype = np.dtype(dtype)
self.explicit = False
示例3: __init__
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def __init__(self, ops, dtype='float64'):
self.ops = ops
mops = np.zeros(len(ops), dtype=np.int)
for iop, oper in enumerate(ops):
if not isinstance(oper, (LinearOperator, spLinearOperator)):
self.ops[iop] = MatrixMult(oper, dtype=oper.dtype)
mops[iop] = self.ops[iop].shape[1]
self.mops = mops.sum()
nops = [oper.shape[0] for oper in self.ops]
if len(set(nops)) > 1:
raise ValueError('operators have different number of rows')
self.nops = nops[0]
self.mmops = np.insert(np.cumsum(mops), 0, 0)
self.shape = (self.nops, self.mops)
if dtype is None:
self.dtype = _get_dtype(self.ops)
else:
self.dtype = np.dtype(dtype)
self.explicit = False
示例4: _check_reentrancy
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def _check_reentrancy(solver, is_reentrant):
def matvec(x):
A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]])
y, info = solver(A, x)
assert_equal(info, 0)
return y
b = np.array([1, 1./2, 1./3])
op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec,
dtype=b.dtype)
if not is_reentrant:
assert_raises(RuntimeError, solver, op, b)
else:
y, info = solver(op, b)
assert_equal(info, 0)
assert_allclose(y, [1, 1, 1])
#------------------------------------------------------------------------------
示例5: _check_reentrancy
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def _check_reentrancy(solver, is_reentrant):
def matvec(x):
A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]])
y, info = solver(A, x)
assert_equal(info, 0)
return y
b = np.array([1, 1./2, 1./3])
op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec,
dtype=b.dtype)
if not is_reentrant:
assert_raises(RuntimeError, solver, op, b)
else:
y, info = solver(op, b)
assert_equal(info, 0)
assert_allclose(y, [1, 1, 1])
示例6: test_matmul
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_matmul(self):
if not TEST_MATMUL:
pytest.skip("matmul is only tested in Python 3.5+")
D = {'shape': self.A.shape,
'matvec': lambda x: np.dot(self.A, x).reshape(self.A.shape[0]),
'rmatvec': lambda x: np.dot(self.A.T.conj(),
x).reshape(self.A.shape[1]),
'matmat': lambda x: np.dot(self.A, x)}
A = interface.LinearOperator(**D)
B = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
b = B[0]
assert_equal(operator.matmul(A, b), A * b)
assert_equal(operator.matmul(A, B), A * B)
assert_raises(ValueError, operator.matmul, A, 2)
assert_raises(ValueError, operator.matmul, 2, A)
示例7: compute_dr_wrt
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def compute_dr_wrt(self, wrt):
if wrt is self.a:
if False:
from scipy.sparse.linalg.interface import LinearOperator
return LinearOperator((self.size, wrt.size), lambda x : self.reorder(x.reshape(self.a.shape)).ravel())
else:
a = self.a
asz = a.size
ashape = a.shape
key = self.unique_reorder_id()
if key not in self.dr_lookup or key is None:
JS = self.reorder(np.arange(asz).reshape(ashape))
IS = np.arange(JS.size)
data = np.ones_like(IS)
shape = JS.shape
self.dr_lookup[key] = sp.csc_matrix((data, (IS, JS.ravel())), shape=(self.r.size, wrt.r.size))
return self.dr_lookup[key]
示例8: __init__
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def __init__(self, A, M, sigma, ifunc=gmres, tol=0):
if tol <= 0:
# when tol=0, ARPACK uses machine tolerance as calculated
# by LAPACK's _LAMCH function. We should match this
tol = 2 * np.finfo(A.dtype).eps
self.A = A
self.M = M
self.sigma = sigma
self.ifunc = ifunc
self.tol = tol
def mult_func(x):
return A.matvec(x) - sigma * M.matvec(x)
def mult_func_M_None(x):
return A.matvec(x) - sigma * x
x = np.zeros(A.shape[1])
if M is None:
dtype = mult_func_M_None(x).dtype
self.OP = LinearOperator(self.A.shape,
mult_func_M_None,
dtype=dtype)
else:
dtype = mult_func(x).dtype
self.OP = LinearOperator(self.A.shape,
mult_func,
dtype=dtype)
self.shape = A.shape
示例9: test_preconditioner
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_preconditioner(self):
# Check that preconditioning works
pc = splu(Am.tocsc())
M = LinearOperator(matvec=pc.solve, shape=A.shape, dtype=A.dtype)
x0, count_0 = do_solve()
x1, count_1 = do_solve(M=M)
assert_(count_1 == 3)
assert_(count_1 < count_0/2)
assert_(allclose(x1, x0, rtol=1e-14))
示例10: check_precond_dummy
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def check_precond_dummy(solver, case):
tol = 1e-8
def identity(b,which=None):
"""trivial preconditioner"""
return b
A = case.A
M,N = A.shape
D = spdiags([1.0/A.diagonal()], [0], M, N)
b = arange(A.shape[0], dtype=float)
x0 = 0*b
precond = LinearOperator(A.shape, identity, rmatvec=identity)
if solver is qmr:
x, info = solver(A, b, M1=precond, M2=precond, x0=x0, tol=tol)
else:
x, info = solver(A, b, M=precond, x0=x0, tol=tol)
assert_equal(info,0)
assert_normclose(A.dot(x), b, tol)
A = aslinearoperator(A)
A.psolve = identity
A.rpsolve = identity
x, info = solver(A, b, x0=x0, tol=tol)
assert_equal(info,0)
assert_normclose(A*x, b, tol=tol)
示例11: test_leftright_precond
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_leftright_precond(self):
"""Check that QMR works with left and right preconditioners"""
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
from scipy.sparse.linalg.dsolve import splu
from scipy.sparse.linalg.interface import LinearOperator
n = 100
dat = ones(n)
A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n)
b = arange(n,dtype='d')
L = spdiags([-dat/2, dat], [-1,0], n, n)
U = spdiags([4*dat, -dat], [0,1], n, n)
L_solver = splu(L)
U_solver = splu(U)
def L_solve(b):
return L_solver.solve(b)
def U_solve(b):
return U_solver.solve(b)
def LT_solve(b):
return L_solver.solve(b,'T')
def UT_solve(b):
return U_solver.solve(b,'T')
M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve)
M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve)
x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2)
assert_equal(info,0)
assert_normclose(A*x, b, tol=1e-8)
示例12: test_preconditioner
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_preconditioner(self):
# Check that preconditioning works
pc = splu(Am.tocsc())
M = LinearOperator(matvec=pc.solve, shape=A.shape, dtype=A.dtype)
x0, count_0 = do_solve()
x1, count_1 = do_solve(M=M)
assert_equal(count_1, 3)
assert_(count_1 < count_0/2)
assert_(allclose(x1, x0, rtol=1e-14))
示例13: test_repr
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_repr():
A = interface.LinearOperator(shape=(1, 1), matvec=lambda x: 1)
repr_A = repr(A)
assert_('unspecified dtype' not in repr_A, repr_A)
示例14: test_attributes
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_attributes():
A = interface.aslinearoperator(np.arange(16).reshape(4, 4))
def always_four_ones(x):
x = np.asarray(x)
assert_(x.shape == (3,) or x.shape == (3, 1))
return np.ones(4)
B = interface.LinearOperator(shape=(4, 3), matvec=always_four_ones)
for op in [A, B, A * B, A.H, A + A, B + B, A ** 4]:
assert_(hasattr(op, "dtype"))
assert_(hasattr(op, "shape"))
assert_(hasattr(op, "_matvec"))
示例15: test_pickle
# 需要導入模塊: from scipy.sparse.linalg import interface [as 別名]
# 或者: from scipy.sparse.linalg.interface import LinearOperator [as 別名]
def test_pickle():
import pickle
for protocol in range(pickle.HIGHEST_PROTOCOL + 1):
A = interface.LinearOperator((3, 3), matvec)
s = pickle.dumps(A, protocol=protocol)
B = pickle.loads(s)
for k in A.__dict__:
assert_equal(getattr(A, k), getattr(B, k))