當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.aslinearoperator方法代碼示例

本文整理匯總了Python中scipy.sparse.linalg.aslinearoperator方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.aslinearoperator方法的具體用法?Python linalg.aslinearoperator怎麽用?Python linalg.aslinearoperator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.linalg的用法示例。


在下文中一共展示了linalg.aslinearoperator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_scipy_gmres_linop_parameter

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def test_scipy_gmres_linop_parameter(self):
    """ This is a test on gmres method with a parameter-dependent linear operator """
    for omega in np.linspace(-10.0, 10.0, 10):
      for eps in np.linspace(-10.0, 10.0, 10):
        
        linop_param = linalg.aslinearoperator(vext2veff_c(omega, eps, n))
        
        Aparam = np.zeros((n,n), np.complex64)
        for i in range(n):
          uv = np.zeros(n, np.complex64); uv[i] = 1.0
          Aparam[:,i] = linop_param.matvec(uv)
        x_ref = np.dot(inv(Aparam), b)
    
        x_itr,info = linalg.lgmres(linop_param, b)
        derr = abs(x_ref-x_itr).sum()/x_ref.size
        self.assertLess(derr, 1e-6) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:test_0020_scipy_gmres.py

示例2: _makeOperator

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def _makeOperator(operatorInput, expectedShape):
    """Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products.

    Examples
    --------
    >>> A = _makeOperator( arrayA, (n, n) )
    >>> vectorB = A( vectorX )

    """
    if operatorInput is None:
        def ident(x):
            return x
        operator = LinearOperator(expectedShape, ident, matmat=ident)
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    return operator 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:lobpcg.py

示例3: regularized_lsq_operator

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def regularized_lsq_operator(J, diag):
    """Return a matrix arising in regularized least squares as LinearOperator.
    
    The matrix is
        [ J ]
        [ D ]
    where D is diagonal matrix with elements from `diag`.
    """
    J = aslinearoperator(J)
    m, n = J.shape

    def matvec(x):
        return np.hstack((J.matvec(x), diag * x))

    def rmatvec(x):
        x1 = x[:m]
        x2 = x[m:]
        return J.rmatvec(x1) + diag * x2

    return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:22,代碼來源:common.py

示例4: test_linearoperator_deallocation

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def test_linearoperator_deallocation():
    # Check that the linear operators used by the Arpack wrappers are
    # deallocatable by reference counting -- they are big objects, so
    # Python's cyclic GC may not collect them fast enough before
    # running out of memory if eigs/eigsh are called in a tight loop.

    M_d = np.eye(10)
    M_s = csc_matrix(M_d)
    M_o = aslinearoperator(M_d)

    with assert_deallocated(lambda: arpack.SpLuInv(M_s)):
        pass
    with assert_deallocated(lambda: arpack.LuInv(M_d)):
        pass
    with assert_deallocated(lambda: arpack.IterInv(M_s)):
        pass
    with assert_deallocated(lambda: arpack.IterOpInv(M_o, None, 0.3)):
        pass
    with assert_deallocated(lambda: arpack.IterOpInv(M_o, M_o, 0.3)):
        pass 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_arpack.py

示例5: test_eigs_for_k_greater

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def test_eigs_for_k_greater():
    # Test eigs() for k beyond limits.
    A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4))  # sparse
    A = generate_matrix(4, sparse=False)
    M_dense = np.random.random((4, 4))
    M_sparse = generate_matrix(4, sparse=True)
    M_linop = aslinearoperator(M_dense)
    eig_tuple1 = eig(A, b=M_dense)
    eig_tuple2 = eig(A, b=M_sparse)

    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning)

        assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1)
        assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1)
        assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1)
        assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2)

        # M as LinearOperator
        assert_raises(TypeError, eigs, A, M=M_linop, k=3)

        # Test 'A' for different types
        assert_raises(TypeError, eigs, aslinearoperator(A), k=3)
        assert_raises(TypeError, eigs, A_sparse, k=3) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:26,代碼來源:test_arpack.py

示例6: test_eigsh_for_k_greater

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def test_eigsh_for_k_greater():
    # Test eigsh() for k beyond limits.
    A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4))  # sparse
    A = generate_matrix(4, sparse=False)
    M_dense = generate_matrix_symmetric(4, pos_definite=True)
    M_sparse = generate_matrix_symmetric(4, pos_definite=True, sparse=True)
    M_linop = aslinearoperator(M_dense)
    eig_tuple1 = eigh(A, b=M_dense)
    eig_tuple2 = eigh(A, b=M_sparse)

    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning)

        assert_equal(eigsh(A, M=M_dense, k=4), eig_tuple1)
        assert_equal(eigsh(A, M=M_dense, k=5), eig_tuple1)
        assert_equal(eigsh(A, M=M_sparse, k=5), eig_tuple2)

        # M as LinearOperator
        assert_raises(TypeError, eigsh, A, M=M_linop, k=4)

        # Test 'A' for different types
        assert_raises(TypeError, eigsh, aslinearoperator(A), k=4)
        assert_raises(TypeError, eigsh, A_sparse, M=M_dense, k=4) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:25,代碼來源:test_arpack.py

示例7: convert

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def convert(self, x):
        if (isinstance(x, (np.ndarray, sp.spmatrix))):
            return sla.aslinearoperator(x)
        else:
            assert(False) 
開發者ID:bamos,項目名稱:block,代碼行數:7,代碼來源:block.py

示例8: test_linear_operator

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def test_linear_operator():
    npr.seed(0)

    nx, nineq, neq = 4, 6, 7
    Q = npr.randn(nx, nx)
    G = npr.randn(nineq, nx)
    A = npr.randn(neq, nx)
    D = np.diag(npr.rand(nineq))

    K_ = np.bmat((
        (Q, np.zeros((nx, nineq)), G.T, A.T),
        (np.zeros((nineq, nx)), D, np.eye(nineq), np.zeros((nineq, neq))),
        (G, np.eye(nineq), np.zeros((nineq, nineq + neq))),
        (A, np.zeros((neq, nineq + nineq + neq)))
    ))

    Q_lo = sla.aslinearoperator(Q)
    G_lo = sla.aslinearoperator(G)
    A_lo = sla.aslinearoperator(A)
    D_lo = sla.aslinearoperator(D)

    K = block((
        (Q_lo,    0,    G.T,    A.T),
        (0,    D_lo,    'I',      0),
        (G_lo,  'I',      0,      0),
        (A_lo,    0,      0,      0)
    ), arrtype=sla.LinearOperator)

    w1 = np.random.randn(K_.shape[1])
    assert np.allclose(K_.dot(w1), K.dot(w1))
    w2 = np.random.randn(K_.shape[0])
    assert np.allclose(K_.T.dot(w2), K.H.dot(w2))
    W = np.random.randn(*K_.shape)
    assert np.allclose(K_.dot(W), K.dot(W)) 
開發者ID:bamos,項目名稱:block,代碼行數:36,代碼來源:test.py

示例9: _onenormest_matrix_power

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def _onenormest_matrix_power(A, p,
        t=2, itmax=5, compute_v=False, compute_w=False):
    """
    Efficiently estimate the 1-norm of A^p.

    Parameters
    ----------
    A : ndarray
        Matrix whose 1-norm of a power is to be computed.
    p : int
        Non-negative integer power.
    t : int, optional
        A positive parameter controlling the tradeoff between
        accuracy versus time and memory usage.
        Larger values take longer and use more memory
        but give more accurate output.
    itmax : int, optional
        Use at most this many iterations.
    compute_v : bool, optional
        Request a norm-maximizing linear operator input vector if True.
    compute_w : bool, optional
        Request a norm-maximizing linear operator output vector if True.

    Returns
    -------
    est : float
        An underestimate of the 1-norm of the sparse matrix.
    v : ndarray, optional
        The vector such that ||Av||_1 == est*||v||_1.
        It can be thought of as an input to the linear operator
        that gives an output with particularly large norm.
    w : ndarray, optional
        The vector Av which has relatively large 1-norm.
        It can be thought of as an output of the linear operator
        that is relatively large in norm compared to the input.

    """
    #XXX Eventually turn this into an API function in the  _onenormest module,
    #XXX and remove its underscore,
    #XXX but wait until expm_multiply goes into scipy.
    return scipy.sparse.linalg.onenormest(aslinearoperator(A) ** p) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:43,代碼來源:_expm_multiply.py

示例10: left_multiplied_operator

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def left_multiplied_operator(J, d):
    """Return diag(d) J as LinearOperator."""
    J = aslinearoperator(J)

    def matvec(x):
        return d * J.matvec(x)

    def matmat(X):
        return d * J.matmat(X)

    def rmatvec(x):
        return J.rmatvec(x.ravel() * d)

    return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
                          rmatvec=rmatvec) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:common.py

示例11: right_multiplied_operator

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def right_multiplied_operator(J, d):
    """Return J diag(d) as LinearOperator."""
    J = aslinearoperator(J)

    def matvec(x):
        return J.matvec(np.ravel(x) * d)

    def matmat(X):
        return J.matmat(X * d[:, np.newaxis])

    def rmatvec(x):
        return d * J.rmatvec(x)

    return LinearOperator(J.shape, matvec=matvec, matmat=matmat,
                          rmatvec=rmatvec) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:17,代碼來源:common.py

示例12: estimate_spectral_norm_diff

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def estimate_spectral_norm_diff(A, B, its=20):
    """
    Estimate spectral norm of the difference of two matrices by the randomized
    power method.

    ..  This function automatically detects the matrix data type and calls the
        appropriate backend. For details, see :func:`backend.idd_diffsnorm` and
        :func:`backend.idz_diffsnorm`.

    Parameters
    ----------
    A : :class:`scipy.sparse.linalg.LinearOperator`
        First matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
        `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
    B : :class:`scipy.sparse.linalg.LinearOperator`
        Second matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with
        the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
    its : int, optional
        Number of power method iterations.

    Returns
    -------
    float
        Spectral norm estimate of matrix difference.
    """
    from scipy.sparse.linalg import aslinearoperator
    A = aslinearoperator(A)
    B = aslinearoperator(B)
    m, n = A.shape
    matvec1 = lambda x: A. matvec(x)
    matveca1 = lambda x: A.rmatvec(x)
    matvec2 = lambda x: B. matvec(x)
    matveca2 = lambda x: B.rmatvec(x)
    if _is_real(A):
        return backend.idd_diffsnorm(
            m, n, matveca1, matveca2, matvec1, matvec2, its=its)
    else:
        return backend.idz_diffsnorm(
            m, n, matveca1, matveca2, matvec1, matvec2, its=its) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:interpolative.py

示例13: check_precond_dummy

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def check_precond_dummy(solver, case):
    tol = 1e-8

    def identity(b,which=None):
        """trivial preconditioner"""
        return b

    A = case.A

    M,N = A.shape
    D = spdiags([1.0/A.diagonal()], [0], M, N)

    b = arange(A.shape[0], dtype=float)
    x0 = 0*b

    precond = LinearOperator(A.shape, identity, rmatvec=identity)

    if solver is qmr:
        x, info = solver(A, b, M1=precond, M2=precond, x0=x0, tol=tol)
    else:
        x, info = solver(A, b, M=precond, x0=x0, tol=tol)
    assert_equal(info,0)
    assert_normclose(A.dot(x), b, tol)

    A = aslinearoperator(A)
    A.psolve = identity
    A.rpsolve = identity

    x, info = solver(A, b, x0=x0, tol=tol)
    assert_equal(info,0)
    assert_normclose(A*x, b, tol=tol) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:33,代碼來源:test_iterative.py

示例14: _get_test_tolerance

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def _get_test_tolerance(type_char, mattype=None):
    """
    Return tolerance values suitable for a given test:

    Parameters
    ----------
    type_char : {'f', 'd', 'F', 'D'}
        Data type in ARPACK eigenvalue problem
    mattype : {csr_matrix, aslinearoperator, asarray}, optional
        Linear operator type

    Returns
    -------
    tol
        Tolerance to pass to the ARPACK routine
    rtol
        Relative tolerance for outputs
    atol
        Absolute tolerance for outputs

    """

    rtol = {'f': 3000 * np.finfo(np.float32).eps,
            'F': 3000 * np.finfo(np.float32).eps,
            'd': 2000 * np.finfo(np.float64).eps,
            'D': 2000 * np.finfo(np.float64).eps}[type_char]
    atol = rtol
    tol = 0

    if mattype is aslinearoperator and type_char in ('f', 'F'):
        # iterative methods in single precision: worse errors
        # also: bump ARPACK tolerance so that the iterative method converges
        tol = 30 * np.finfo(np.float32).eps
        rtol *= 5

    if mattype is csr_matrix and type_char in ('f', 'F'):
        # sparse in single precision: worse errors
        rtol *= 5

    return tol, rtol, atol 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:42,代碼來源:test_arpack.py

示例15: _aslinearoperator_with_dtype

# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import aslinearoperator [as 別名]
def _aslinearoperator_with_dtype(m):
    m = aslinearoperator(m)
    if not hasattr(m, 'dtype'):
        x = np.zeros(m.shape[1])
        m.dtype = (m * x).dtype
    return m 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:8,代碼來源:test_arpack.py


注:本文中的scipy.sparse.linalg.aslinearoperator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。