本文整理匯總了Python中scipy.sparse.linalg.LinearOperator方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.LinearOperator方法的具體用法?Python linalg.LinearOperator怎麽用?Python linalg.LinearOperator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.linalg
的用法示例。
在下文中一共展示了linalg.LinearOperator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: si_c2
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def si_c2(self,ww):
"""
This computes the correlation part of the screened interaction using LinearOpt and lgmres
lgmres method is much slower than np.linalg.solve !!
"""
import numpy as np
from scipy.sparse.linalg import lgmres
from scipy.sparse.linalg import LinearOperator
rf0 = si0 = self.rf0(ww)
for iw,w in enumerate(ww):
k_c = np.dot(self.kernel_sq, rf0[iw,:,:])
b = np.dot(k_c, self.kernel_sq)
self.comega_current = w
k_c_opt = LinearOperator((self.nprod,self.nprod), matvec=self.gw_vext2veffmatvec, dtype=self.dtypeComplex)
for m in range(self.nprod):
si0[iw,m,:],exitCode = lgmres(k_c_opt, b[m,:], atol=self.gw_iter_tol, maxiter=self.maxiter)
if exitCode != 0: print("LGMRES has not achieved convergence: exitCode = {}".format(exitCode))
#np.allclose(np.dot(k_c, si0), b, atol=1e-05) == True #Test
return si0
示例2: gw_comp_veff
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def gw_comp_veff(self, vext, comega=1j*0.0):
"""
This computes an effective field (scalar potential) given the external
scalar potential as follows:
(1-v\chi_{0})V_{eff} = V_{ext} = X_{a}^{n}V_{\mu}^{ab}X_{b}^{m} *
v\chi_{0}v * X_{a}^{n}V_{nu}^{ab}X_{b}^{m}
returns V_{eff} as list for all n states(self.nn[s]).
"""
from scipy.sparse.linalg import LinearOperator
self.comega_current = comega
veff_op = LinearOperator((self.nprod,self.nprod),
matvec=self.gw_vext2veffmatvec,
dtype=self.dtypeComplex)
from scipy.sparse.linalg import lgmres
resgm, info = lgmres(veff_op,
np.require(vext, dtype=self.dtypeComplex, requirements='C'),
atol=self.gw_iter_tol, maxiter=self.maxiter)
if info != 0:
print("LGMRES has not achieved convergence: exitCode = {}".format(info))
return resgm
示例3: build_full
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def build_full(self, shape, fill_val):
m, n = shape
if fill_val == 0:
return shape
else:
def matvec(v):
return v.sum() * fill_val * np.ones(m)
def rmatvec(v):
return v.sum() * fill_val * np.ones(n)
def matmat(M):
return M.sum(axis=0) * fill_val * np.ones((m, M.shape[1]))
return sla.LinearOperator(shape=shape,
matvec=matvec,
rmatvec=rmatvec,
matmat=matmat,
dtype=self.dtype)
示例4: _makeOperator
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def _makeOperator(operatorInput, expectedShape):
"""Takes a dense numpy array or a sparse matrix or
a function and makes an operator performing matrix * blockvector
products.
Examples
--------
>>> A = _makeOperator( arrayA, (n, n) )
>>> vectorB = A( vectorX )
"""
if operatorInput is None:
def ident(x):
return x
operator = LinearOperator(expectedShape, ident, matmat=ident)
else:
operator = aslinearoperator(operatorInput)
if operator.shape != expectedShape:
raise ValueError('operator has invalid shape')
return operator
示例5: regularized_lsq_operator
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def regularized_lsq_operator(J, diag):
"""Return a matrix arising in regularized least squares as LinearOperator.
The matrix is
[ J ]
[ D ]
where D is diagonal matrix with elements from `diag`.
"""
J = aslinearoperator(J)
m, n = J.shape
def matvec(x):
return np.hstack((J.matvec(x), diag * x))
def rmatvec(x):
x1 = x[:m]
x2 = x[m:]
return J.rmatvec(x1) + diag * x2
return LinearOperator((m + n, n), matvec=matvec, rmatvec=rmatvec)
示例6: right_multiply
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def right_multiply(J, d, copy=True):
"""Compute J diag(d).
If `copy` is False, `J` is modified in place (unless being LinearOperator).
"""
if copy and not isinstance(J, LinearOperator):
J = J.copy()
if issparse(J):
J.data *= d.take(J.indices, mode='clip') # scikit-learn recipe.
elif isinstance(J, LinearOperator):
J = right_multiplied_operator(J, d)
else:
J *= d
return J
示例7: left_multiply
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def left_multiply(J, d, copy=True):
"""Compute diag(d) J.
If `copy` is False, `J` is modified in place (unless being LinearOperator).
"""
if copy and not isinstance(J, LinearOperator):
J = J.copy()
if issparse(J):
J.data *= np.repeat(d, np.diff(J.indptr)) # scikit-learn recipe.
elif isinstance(J, LinearOperator):
J = left_multiplied_operator(J, d)
else:
J *= d[:, np.newaxis]
return J
示例8: lsmr_operator
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def lsmr_operator(Jop, d, active_set):
"""Compute LinearOperator to use in LSMR by dogbox algorithm.
`active_set` mask is used to excluded active variables from computations
of matrix-vector products.
"""
m, n = Jop.shape
def matvec(x):
x_free = x.ravel().copy()
x_free[active_set] = 0
return Jop.matvec(x * d)
def rmatvec(x):
r = d * Jop.rmatvec(x)
r[active_set] = 0
return r
return LinearOperator((m, n), matvec=matvec, rmatvec=rmatvec, dtype=float)
示例9: todense
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def todense(self):
"""Return a dense array representation of this operator.
Returns
-------
arr : ndarray, shape=(n, n)
An array with the same shape and containing
the same data represented by this `LinearOperator`.
"""
s, y, n_corrs, rho = self.sk, self.yk, self.n_corrs, self.rho
I = np.eye(*self.shape, dtype=self.dtype)
Hk = I
for i in range(n_corrs):
A1 = I - s[i][:, np.newaxis] * y[i][np.newaxis, :] * rho[i]
A2 = I - y[i][:, np.newaxis] * s[i][np.newaxis, :] * rho[i]
Hk = np.dot(A1, np.dot(Hk, A2)) + (rho[i] * s[i][:, np.newaxis] *
s[i][np.newaxis, :])
return Hk
示例10: lagrangian_hessian
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def lagrangian_hessian(self, z, v):
"""Returns scaled Lagrangian Hessian"""
# Compute Hessian in relation to x and s
Hx = self.lagrangian_hessian_x(z, v)
if self.n_ineq > 0:
S_Hs_S = self.lagrangian_hessian_s(z, v)
# The scaled Lagragian Hessian is:
# [ Hx 0 ]
# [ 0 S Hs S ]
def matvec(vec):
vec_x = self.get_variables(vec)
vec_s = self.get_slack(vec)
if self.n_ineq > 0:
return np.hstack((Hx.dot(vec_x), S_Hs_S*vec_s))
else:
return Hx.dot(vec_x)
return LinearOperator((self.n_vars+self.n_ineq,
self.n_vars+self.n_ineq),
matvec)
示例11: _check_reentrancy
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def _check_reentrancy(solver, is_reentrant):
def matvec(x):
A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]])
y, info = solver(A, x)
assert_equal(info, 0)
return y
b = np.array([1, 1./2, 1./3])
op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec,
dtype=b.dtype)
if not is_reentrant:
assert_raises(RuntimeError, solver, op, b)
else:
y, info = solver(op, b)
assert_equal(info, 0)
assert_allclose(y, [1, 1, 1])
#------------------------------------------------------------------------------
示例12: get_subset_lin_op
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def get_subset_lin_op(lin_op, sub_idx):
""" Subset a linear operator to the indices in `sub_idx`. Equivalent to A' = A[sub_idx, :]
:param LinearOperator lin_op: input linear operator
:param np.ndarray[int] sub_idx: subset index
:return: the subset linear operator
:rtype: LinearOperator
"""
if lin_op is None:
return None
if type(lin_op) is IndexOperator:
# subsetting IndexOperator yields a new IndexOperator
return IndexOperator(lin_op.index_map[sub_idx], dim_x=lin_op.dim_x)
elif isinstance(lin_op, MatrixLinearOperator):
# subsetting a matrix multiplication operation yields a new matrix
return MatrixLinearOperator(lin_op.A[sub_idx, :])
# in the general case, append a sub-indexing operator
return IndexOperator(sub_idx, dim_x=lin_op.shape[0]) * lin_op
示例13: rmatvec_nd
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def rmatvec_nd(lin_op, x):
"""
Project a 1D or 2D numpy or sparse array using rmatvec. This is different from rmatvec
because it applies rmatvec to each row and column. If x is n x n and lin_op is n x k,
the result will be k x k.
:param LinearOperator lin_op: The linear operator to apply to x
:param np.ndarray|sp.spmatrix x: array/matrix to be projected
:return: the projected array
:rtype: np.ndarray|sp.spmatrix
"""
if x is None or lin_op is None:
return x
if isinstance(x, sp.spmatrix):
y = x.toarray()
elif np.isscalar(x):
y = np.array(x, ndmin=1)
else:
y = np.copy(x)
proj_func = lambda z: lin_op.rmatvec(z)
for j in range(y.ndim):
if y.shape[j] == lin_op.shape[0]:
y = np.apply_along_axis(proj_func, j, y)
return y
示例14: _check_reentrancy
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def _check_reentrancy(solver, is_reentrant):
def matvec(x):
A = np.array([[1.0, 0, 0], [0, 2.0, 0], [0, 0, 3.0]])
y, info = solver(A, x)
assert_equal(info, 0)
return y
b = np.array([1, 1./2, 1./3])
op = LinearOperator((3, 3), matvec=matvec, rmatvec=matvec,
dtype=b.dtype)
if not is_reentrant:
assert_raises(RuntimeError, solver, op, b)
else:
y, info = solver(op, b)
assert_equal(info, 0)
assert_allclose(y, [1, 1, 1])
示例15: test_eigs_for_k_greater
# 需要導入模塊: from scipy.sparse import linalg [as 別名]
# 或者: from scipy.sparse.linalg import LinearOperator [as 別名]
def test_eigs_for_k_greater():
# Test eigs() for k beyond limits.
A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse
A = generate_matrix(4, sparse=False)
M_dense = np.random.random((4, 4))
M_sparse = generate_matrix(4, sparse=True)
M_linop = aslinearoperator(M_dense)
eig_tuple1 = eig(A, b=M_dense)
eig_tuple2 = eig(A, b=M_sparse)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1)
assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1)
assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2)
# M as LinearOperator
assert_raises(TypeError, eigs, A, M=M_linop, k=3)
# Test 'A' for different types
assert_raises(TypeError, eigs, aslinearoperator(A), k=3)
assert_raises(TypeError, eigs, A_sparse, k=3)