當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse.hstack方法代碼示例

本文整理匯總了Python中scipy.sparse.hstack方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.hstack方法的具體用法?Python sparse.hstack怎麽用?Python sparse.hstack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.hstack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: to_curve_spline

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def to_curve_spline(obj):
    '''
    to_curve_spline(obj) obj if obj is a curve spline and otherwise attempts to coerce obj into a
      curve spline, raising an error if it cannot.
    '''
    if   is_curve_spline(obj):            return obj
    elif is_tuple(obj) and len(obj) == 2: (crds,opts) = obj
    else:                                 (crds,opts) = (obj,{})
    if pimms.is_matrix(crds) or is_curve_spline(crds): crds = [crds]
    spls = [c for c in crds if is_curve_spline(c)]
    opts = dict(opts)
    if 'weights' not in opts and len(spls) == len(crds):
        if all(c.weights is not None for c in crds):
            opts['weights'] = np.concatenate([c.weights for c in crds])
    if 'order' not in opts and len(spls) > 0:
        opts['order'] = np.min([c.order for c in spls])
    if 'smoothing' not in opts and len(spls) > 0:
        sm = set([c.smoothing for c in spls])
        if len(sm) == 1: opts['smoothing'] = list(sm)[0]
        else: opts['smoothing'] = None
    crds = [x.crds if is_curve_spline(crds) else np.asarray(x) for x in crds]
    crds = [x if x.shape[0] == 2 else x.T for x in crds]
    crds = np.hstack(crds)
    return curve_spline(crds, **opts) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:26,代碼來源:core.py

示例2: transform

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def transform(self, X):
        """Encode categorical columns into sparse matrix with one-hot-encoding.

        Args:
            X (pandas.DataFrame): categorical columns to encode

        Returns:
            (scipy.sparse.coo_matrix): sparse matrix encoding categorical
                                       variables into dummy variables
        """

        for i, col in enumerate(X.columns):
            X_col = self._transform_col(X[col], i)
            if X_col is not None:
                if i == 0:
                    X_new = X_col
                else:
                    X_new = sparse.hstack((X_new, X_col))

            logger.debug('{} --> {} features'.format(
                col, self.label_encoder.label_maxes[i])
            )

        return X_new 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:26,代碼來源:categorical.py

示例3: predict

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def predict(self, df):
        X_desc = self.wb_desc.transform(df["item_description"])
        X_desc = X_desc[:, self.desc_indices]

        X_name = 2 * self.cv_name.transform(df["name"])
        X_name2 = 0.5 * self.cv_name2.transform(df["name"])

        X_category0 = self.cv_cat0.transform(df['subcat_0'])
        X_category1 = self.cv_cat1.transform(df['subcat_1'])
        X_category2 = self.cv_cat2.transform(df['subcat_2'])
        X_brand = self.cv_brand.transform(df['brand_name'])
        X_condition = self.cv_condition.transform((df['item_condition_id'] + 10 * df["shipping"]).apply(str))

        df["cat_brand"] = [a + " " + b for a, b in zip(df["category_name"], df["brand_name"])]
        X_cat_brand = self.cv_cat_brand.transform(df["cat_brand"])
        X_desc3 = self.desc3.transform(df["item_description"])

        X = hstack((X_condition,
                    X_desc, X_brand,
                    X_category0, X_category1, X_category2,
                    X_name, X_name2,
                    X_cat_brand, X_desc3)).tocsr()

        return self.model.predict(X) 
開發者ID:aerdem4,項目名稱:mercari-price-suggestion,代碼行數:26,代碼來源:wordbatch_model.py

示例4: get_compound_features

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def get_compound_features(train_data, test_data, feature_gen_methods):
    train_features_list = []
    test_features_list = []

    for m in feature_gen_methods:
        train_features, test_features = m(train_data, test_data)
        train_features_list.append(train_features)
        test_features_list.append(test_features)

    train_features = train_features_list[0]
    test_features = test_features_list[0]

    for i in xrange(1,len(feature_gen_methods)):
        train_features = hstack((train_features, train_features_list[i]))
        test_features = hstack((test_features, test_features_list[i]))

    return train_features, test_features 
開發者ID:CatalystCode,項目名稱:corpus-to-graph-ml,代碼行數:19,代碼來源:features_generation_tools.py

示例5: cat_onehot_encoder_m

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def cat_onehot_encoder_m(df,y,col,selection=True):
    ## ZJN: test raise memory error
    # raise MemoryError


    mlbs = MultiLabelBinarizer(sparse_output=True).fit(df.values)
    from scipy.sparse import csr_matrix
    features_tmp = mlbs.transform(df.values)
    features_tmp = csr_matrix(features_tmp,dtype=float).tocsr()
    models = None
    auc_score = None
    if selection is True:
        auc_score, models = train_lightgbm_for_feature_selection(features_tmp, y)
        print(col, "auc", auc_score)
    #new_feature = pd.DataFrame(features_tmp,columns=["mul_feature_"+col])
    new_feature = features_tmp
    from scipy.sparse import hstack



    return new_feature,mlbs,models,auc_score 
開發者ID:DominickZhang,項目名稱:KDDCup2019_admin,代碼行數:23,代碼來源:feature_expansion.py

示例6: multi_features_for_test

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def multi_features_for_test(df,columns,mlbs,models):

    new_features = {}
    #from multiprocessing import Pool
    #pool = Pool(processes=len(columns))

    for col in columns:
        if col in mlbs:
            mlb = mlbs[col]
            #model = models[col]
            model = None
            new_features[col] = multi_feature_for_one_col(df[col], mlb, model,col) #pool.apply_async(multi_feature_for_one_col, args=(df[col], mlb, model,col))

    new_features_list = []
    for col in columns:
        if col in new_features:
            new_features_list.append(new_features[col])
    from scipy.sparse import hstack
    new_features = hstack(new_features_list,dtype=float)
    #new_features = pd.concat(new_features_list,axis=1)

    return new_features 
開發者ID:DominickZhang,項目名稱:KDDCup2019_admin,代碼行數:24,代碼來源:feature_for_test.py

示例7: fit_transform

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def fit_transform(self, X, y=None, **fit_params):
        self._validate_transformers()
        result = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_transform_one)(
                transformer=trans,
                X=X,
                y=y,
                weight=weight,
                **fit_params)
            for name, trans, weight in self._iter())

        if not result:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        Xs, transformers = zip(*result)
        self._update_transformer_list(transformers)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = self.merge_dataframes_by_column(Xs)
        return Xs 
開發者ID:marrrcin,項目名稱:pandas-feature-union,代碼行數:23,代碼來源:pandas_feature_union.py

示例8: transform

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def transform(self, X):
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(
                transformer=trans,
                X=X,
                y=None,
                weight=weight)
            for name, trans, weight in self._iter())
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = self.merge_dataframes_by_column(Xs)
        return Xs 
開發者ID:marrrcin,項目名稱:pandas-feature-union,代碼行數:18,代碼來源:pandas_feature_union.py

示例9: _propagate_features

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def _propagate_features(self, task):
        """Propagate features from input array to output array."""
        p_out, p_in = self.job.predict_out, self.job.predict_in

        # Check for loss of obs between layers (i.e. with blendindex)
        n_in, n_out = p_in.shape[0], p_out.shape[0]
        r = int(n_in - n_out)

        if not issparse(p_in):
            # Simple item setting
            p_out[:, :task.n_feature_prop] = p_in[r:, task.propagate_features]
        else:
            # Need to populate propagated features using scipy sparse hstack
            self.job.predict_out = hstack(
                [p_in[r:, task.propagate_features],
                 p_out[:, task.n_feature_prop:]]
            ).tolil() 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:19,代碼來源:backend.py

示例10: transform

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def transform(self, X):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        Returns
        -------
        X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
            hstack of results of transformers. sum_n_components is the
            sum of n_components (output dimension) over transformers.
        """
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(trans, X, None, weight)
            for name, trans, weight in self._iter())
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:pipeline.py

示例11: _setup_metric

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def _setup_metric(X, true_labels, inv_psp=None, k=5):
    assert compatible_shapes(X, true_labels), \
        "ground truth and prediction matrices must have same shape."
    num_instances, num_labels = true_labels.shape
    indices = _get_topk(X, num_labels, k)
    ps_indices = None
    if inv_psp is not None:
        ps_indices = _get_topk(
            true_labels.dot(
                sp.spdiags(inv_psp, diags=0,
                           m=num_labels, n=num_labels)),
            num_labels, k)
        inv_psp = np.hstack([inv_psp, np.zeros((1))])

    true_labels = sp.hstack([true_labels,
                             sp.lil_matrix((num_instances, 1),
                                           dtype=np.int32)]).tocsr()
    return indices, true_labels, ps_indices, inv_psp 
開發者ID:kunaldahiya,項目名稱:pyxclib,代碼行數:20,代碼來源:xc_metrics.py

示例12: __init__

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def __init__(self, labels_ops):
        """
        Encapsulates a set of linearly independent operators.

        :param (list|tuple) labels_ops: Sequence of tuples (label, operator) where label is a string
            and operator a qutip.Qobj operator representation.
        """
        self.ops_by_label = OrderedDict(labels_ops)
        self.labels = list(self.ops_by_label.keys())
        self.ops = list(self.ops_by_label.values())
        self.dim = len(self.ops)

        # the basis change transformation matrix from a representation in the operator basis
        # to the original basis. We enforce CSR sparse matrix representation to have efficient
        # matrix vector products.
        self.basis_transform = sphstack([qt.operator_to_vector(opj).data
                                         for opj in self.ops]).tocsr()
        self._metric = None
        self._is_orthonormal = None
        self._all_hermitian = None 
開發者ID:rigetti,項目名稱:grove,代碼行數:22,代碼來源:operator_utils.py

示例13: transform

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def transform(self, X):
		"""Transform X separately by each transformer, concatenate results.

		Parameters
		----------
		X : iterable or array-like, depending on transformers
			Input data to be transformed.

		Returns
		-------
		X_t : array-like or sparse matrix, shape (n_samples, sum_n_components)
			hstack of results of transformers. sum_n_components is the
			sum of n_components (output dimension) over transformers.
		"""
		paral_params = [[X[t['col_pick']] if hasattr(t, 'col_pick') else X, t] for _, t, _ in self._iter()]
		Xs = Apply(transform_one, self.batcher).transform(paral_params)
		if not Xs:
			# All transformers are None
			return np.zeros((X.shape[0], 0))
		if self.concatenate:
			if any(sparse.issparse(f) for f in Xs):
				Xs = sparse.hstack(Xs).tocsr()
			else:
				Xs = np.hstack(Xs)
		return Xs 
開發者ID:anttttti,項目名稱:Wordbatch,代碼行數:27,代碼來源:feature_union.py

示例14: generate_train_batch

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def generate_train_batch(self):

        users, pos_items, neg_items = self._generate_train_cf_batch()
        u_sp = self.user_one_hot[users]
        pos_i_sp = self.kg_feat_mat[pos_items]
        neg_i_sp = self.kg_feat_mat[neg_items]


        # Horizontally stack sparse matrices to get single positive & negative feature matrices
        pos_feats = sp.hstack([u_sp, pos_i_sp])
        neg_feats = sp.hstack([u_sp, neg_i_sp])

        batch_data = {}
        batch_data['pos_feats'] = pos_feats
        batch_data['neg_feats'] = neg_feats
        return batch_data 
開發者ID:xiangwang1223,項目名稱:knowledge_graph_attention_network,代碼行數:18,代碼來源:loader_nfm.py

示例15: generate_test_feed_dict

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import hstack [as 別名]
def generate_test_feed_dict(self, model, user_batch, item_batch, drop_flag=True):
        user_list = np.repeat(user_batch, len(item_batch)).tolist()
        item_list = list(item_batch) * len(user_batch)

        u_sp = self.user_one_hot[user_list]
        pos_i_sp = self.kg_feat_mat[item_list]

        # Horizontally stack sparse matrices to get single positive & negative feature matrices
        pos_feats = sp.hstack([u_sp, pos_i_sp])
        pos_indices, pos_values, pos_shape = self._extract_sp_info(pos_feats)

        feed_dict = {
            model.pos_indices: pos_indices,
            model.pos_values: pos_values,
            model.pos_shape: pos_shape,

            model.mess_dropout: [0.] * len(eval(self.args.layer_size))
        }

        return feed_dict 
開發者ID:xiangwang1223,項目名稱:knowledge_graph_attention_network,代碼行數:22,代碼來源:loader_nfm.py


注:本文中的scipy.sparse.hstack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。