當前位置: 首頁>>代碼示例>>Python>>正文


Python csgraph.shortest_path方法代碼示例

本文整理匯總了Python中scipy.sparse.csgraph.shortest_path方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.shortest_path方法的具體用法?Python csgraph.shortest_path怎麽用?Python csgraph.shortest_path使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.csgraph的用法示例。


在下文中一共展示了csgraph.shortest_path方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: find_thresh

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def find_thresh(C, inf=0.5, sup=3, step=10):
    """ Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
        Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
        The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
        and the original matrix.
    Parameters
    ----------
    C : ndarray, shape (n_nodes,n_nodes)
            The structure matrix to threshold
    inf : float
          The beginning of the linesearch
    sup : float
          The end of the linesearch
    step : integer
            Number of thresholds tested
    """
    dist = []
    search = np.linspace(inf, sup, step)
    for thresh in search:
        Cprime = sp_to_adjency(C, 0, thresh)
        SC = shortest_path(Cprime, method='D')
        SC[SC == float('inf')] = 100
        dist.append(np.linalg.norm(SC - C))
    return search[np.argmin(dist)], dist 
開發者ID:PythonOT,項目名稱:POT,代碼行數:26,代碼來源:plot_barycenter_fgw.py

示例2: compute_distance_matrix

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def compute_distance_matrix(self):
        shape = self.layout.shape
        moves = [(-1, 0), (1, 0), (0, -1), (0, 1)]

        adj_matrix = np.zeros((self.layout.size, self.layout.size))

        for (r, c) in self.valid_positions:
            index = np.ravel_multi_index((r, c), shape)

            for move in moves:
                nr, nc = r + move[0], c + move[1]

                if (nr, nc) in self.valid_positions:
                    nindex = np.ravel_multi_index((nr, nc), shape)
                    adj_matrix[index, nindex] = 1

        self.dist_matrix = shortest_path(adj_matrix) 
開發者ID:paulorauber,項目名稱:hpg,代碼行數:19,代碼來源:mazes.py

示例3: drnl_node_labeling

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def drnl_node_labeling(self, edge_index, src, dst, num_nodes=None):
        # Double-radius node labeling (DRNL).
        src, dst = (dst, src) if src > dst else (src, dst)
        adj = to_scipy_sparse_matrix(edge_index, num_nodes=num_nodes).tocsr()

        idx = list(range(src)) + list(range(src + 1, adj.shape[0]))
        adj_wo_src = adj[idx, :][:, idx]

        idx = list(range(dst)) + list(range(dst + 1, adj.shape[0]))
        adj_wo_dst = adj[idx, :][:, idx]

        dist2src = shortest_path(adj_wo_dst, directed=False, unweighted=True)
        dist2src = dist2src[:, src]
        dist2src = np.insert(dist2src, dst, 0, axis=0)
        dist2src = torch.from_numpy(dist2src)

        dist2dst = shortest_path(adj_wo_src, directed=False, unweighted=True)
        dist2dst = dist2dst[:, dst - 1]
        dist2dst = np.insert(dist2dst, src, 0, axis=0)
        dist2dst = torch.from_numpy(dist2dst)

        dist = dist2src + dist2dst
        dist_over_2, dist_mod_2 = dist // 2, dist % 2

        z = 1 + torch.min(dist2src, dist2dst)
        z += dist_over_2 * (dist_over_2 + dist_mod_2 - 1)
        z[src] = 1.
        z[dst] = 1.
        z[torch.isnan(z)] = 0.

        self.__max_z__ = max(int(z.max()), self.__max_z__)

        return z.to(torch.long) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:35,代碼來源:seal_link_pred.py

示例4: create_routing_table

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def create_routing_table(self):
        self.excluded_nodes, g_dense = Router.create_dense_matrix(self.graph, tuple(self.settings.items()))
        self.shortest_paths, self.predecessors = Router.shortest_path(g_dense.tostring(), g_dense.shape) 
開發者ID:c3nav,項目名稱:c3nav-32c3,代碼行數:5,代碼來源:router.py

示例5: shortest_path

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def shortest_path(cls, data, shape):
        # let scipy do it's magic and calculate all shortest paths in the remaining graph
        g_sparse = csr_matrix(np.ma.masked_values(np.fromstring(data).reshape(shape), 0))
        return shortest_path(g_sparse, return_predecessors=True) 
開發者ID:c3nav,項目名稱:c3nav-32c3,代碼行數:6,代碼來源:router.py

示例6: make_distance_matrix_from_adjacency_matrix

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def make_distance_matrix_from_adjacency_matrix(AG):
    """
    Represent simple unweighted graph as compact metric space (with
    integer distances) based on its shortest path lengths.

    Parameters
    -----------
    AG: np.array (|V(G)|×|V(G)|)
        (Sparse) adjacency matrix of simple unweighted graph G.

    Returns
    --------
    DG: np.array (|V(G)|×|V(G)|)
        (Dense) distance matrix of the compact metric space
        representation of G based on its shortest path lengths.
    """
    # Convert adjacency matrix to SciPy format if needed.
    if not sps.issparse(AG) and not isinstance(AG, np.ndarray):
        AG = np.asarray(AG)

    # Compile distance matrix of the graph based on its shortest path
    # lengths.
    DG = shortest_path(AG, directed=False, unweighted=True)
    # Ensure compactness of metric space, represented by distance
    # matrix.
    if np.any(np.isinf(DG)):
        warnings.warn("disconnected graph is approximated by its largest connected component")
        # Extract largest connected component of the graph.
        _, components_by_vertex = connected_components(AG, directed=False)
        components, component_sizes = np.unique(components_by_vertex, return_counts=True)
        largest_component = components[np.argmax(component_sizes)]
        DG = DG[components_by_vertex == largest_component]

    # Cast distance matrix to optimal integer type.
    DG = cast_distance_matrix_to_optimal_int_type(DG)

    return DG 
開發者ID:scikit-tda,項目名稱:persim,代碼行數:39,代碼來源:gromov_hausdorff.py

示例7: _d8_flow_distance

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def _d8_flow_distance(self, x, y, fdir, weights=None, dirmap=None, nodata_in=None,
                          nodata_out=0, out_name='dist', method='shortest', inplace=True,
                          xytype='index', apply_mask=True, ignore_metadata=False, properties={},
                          metadata={}, snap='corner', **kwargs):
        # Construct flat index onto flow direction array
        domain = np.arange(fdir.size)
        fdir_orig_type = fdir.dtype
        if nodata_in is None:
            nodata_cells = np.zeros_like(fdir).astype(bool)
        else:
            if np.isnan(nodata_in):
                nodata_cells = (np.isnan(fdir))
            else:
                nodata_cells = (fdir == nodata_in)
        try:
            mintype = np.min_scalar_type(fdir.size)
            fdir = fdir.astype(mintype)
            domain = domain.astype(mintype)
            startnodes, endnodes = self._construct_matching(fdir, domain,
                                                            dirmap=dirmap)
            if xytype == 'label':
                x, y = self.nearest_cell(x, y, fdir.affine, snap)
            # TODO: Currently the size of weights is hard to understand
            if weights is not None:
                weights = weights.ravel()
                assert(weights.size == startnodes.size)
                assert(weights.size == endnodes.size)
            else:
                assert(startnodes.size == endnodes.size)
                weights = (~nodata_cells).ravel().astype(int)
            C = scipy.sparse.lil_matrix((fdir.size, fdir.size))
            for i,j,w in zip(startnodes, endnodes, weights):
                C[i,j] = w
            C = C.tocsr()
            xyindex = np.ravel_multi_index((y, x), fdir.shape)
            dist = csgraph.shortest_path(C, indices=[xyindex], directed=False)
            dist[~np.isfinite(dist)] = nodata_out
            dist = dist.ravel()
            dist = dist.reshape(fdir.shape)
        except:
            raise
        finally:
            self._unflatten_fdir(fdir, domain, dirmap)
            fdir = fdir.astype(fdir_orig_type)
        # Prepare output
        return self._output_handler(data=dist, out_name=out_name, properties=properties,
                                    inplace=inplace, metadata=metadata) 
開發者ID:mdbartos,項目名稱:pysheds,代碼行數:49,代碼來源:grid.py

示例8: _interpolate_lines

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def _interpolate_lines(clusters, elongation_offset, extent, st_map, end_map):
    """
    Interpolates the baseline clusters and sets the correct line direction.
    """
    logger.debug('Reticulating splines')
    lines = []
    extent = geom.Polygon([(0, 0), (extent[1]-1, 0), (extent[1]-1, extent[0]-1), (0, extent[0]-1), (0, 0)])
    f_st_map = maximum_filter(st_map, size=20)
    f_end_map = maximum_filter(end_map, size=20)
    for cluster in clusters[1:]:
        # find start-end point
        points = [point for edge in cluster for point in edge]
        dists = squareform(pdist(points))
        i, j = np.unravel_index(dists.argmax(), dists.shape)
        # build adjacency matrix for shortest path algo
        adj_mat = np.full_like(dists, np.inf)
        for l, r in cluster:
            idx_l = points.index(l)
            idx_r = points.index(r)
            adj_mat[idx_l, idx_r] = dists[idx_l, idx_r]
        # shortest path
        _, pr = shortest_path(adj_mat, directed=False, return_predecessors=True, indices=i)
        k = j
        line = [points[j]]
        while pr[k] != -9999:
            k = pr[k]
            line.append(points[k])
        # smooth line
        line = np.array(line[::-1])
        line = approximate_polygon(line[:,[1,0]], 1)
        lr_dir = line[0] - line[1]
        lr_dir = (lr_dir.T  / np.sqrt(np.sum(lr_dir**2,axis=-1))) * elongation_offset/2
        line[0] = line[0] + lr_dir
        rr_dir = line[-1] - line[-2]
        rr_dir = (rr_dir.T  / np.sqrt(np.sum(rr_dir**2,axis=-1))) * elongation_offset/2
        line[-1] = line[-1] + rr_dir
        ins = geom.LineString(line).intersection(extent)
        if ins.type == 'MultiLineString':
            ins = linemerge(ins)
            # skip lines that don't merge cleanly
            if ins.type != 'LineString':
                continue
        line = np.array(ins, dtype='uint')
        l_end = tuple(line[0])[::-1]
        r_end = tuple(line[-1])[::-1]
        if f_st_map[l_end] - f_end_map[l_end] > 0.2 and f_st_map[r_end] - f_end_map[r_end] < -0.2:
            pass
        elif f_st_map[l_end] - f_end_map[l_end] < -0.2 and f_st_map[r_end] - f_end_map[r_end] > 0.2:
            line = line[::-1]
        else:
            logger.debug('Insufficient marker confidences in output. Defaulting to upright line.')
            if line[0][0] > line[-1][0]:
                line = line[::-1]
        lines.append(line.tolist())
    return lines 
開發者ID:mittagessen,項目名稱:kraken,代碼行數:57,代碼來源:segmentation.py

示例9: fit

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def fit(self, X, y=None, input_type='data'):
        """Fit the model from data in X.

        Parameters
        ----------
        input_type : string, one of: 'data', 'distance'.
            The values of input data X. (default = 'data')

        X : array-like, shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples
            and n_features is the number of features.

        If self.input_type is 'distance':

        X : array-like, shape (n_samples, n_samples),
            Interpret X as precomputed distance or adjacency graph
            computed from samples.

        eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
            The eigenvalue decomposition strategy to use. AMG requires pyamg
            to be installed. It can be faster on very large, sparse problems,
            but may also lead to instabilities.

        Returns
        -------
        self : object
            Returns the instance itself.
        """

        X = self._validate_input(X, input_type)
        self.fit_geometry(X, input_type)

        if not hasattr(self, 'distance_matrix'):
            self.distance_matrix = None
        if not hasattr(self, 'graph_distance_matrix'):
            self.graph_distance_matrix = None
        if not hasattr(self, 'centered_matrix'):
            self.centered_matrix = None

        # don't re-compute these if it's already been done.
        # This might be the case if an eigendecompostion fails and a different sovler is selected
        if (self.distance_matrix is None and self.geom_.adjacency_matrix is None):
            self.distance_matrix = self.geom_.compute_adjacency_matrix()
        elif self.distance_matrix is None:
            self.distance_matrix = self.geom_.adjacency_matrix
        if self.graph_distance_matrix is None:
            self.graph_distance_matrix = graph_shortest_path(self.distance_matrix,
                                                             method = self.path_method,
                                                             directed = False)
        if self.centered_matrix is None:
            self.centered_matrix = center_matrix(self.graph_distance_matrix)

        self.embedding_ = isomap(self.geom_, n_components=self.n_components,
                                 eigen_solver=self.eigen_solver,
                                 random_state=self.random_state,
                                 path_method = self.path_method,
                                 distance_matrix = self.distance_matrix,
                                 graph_distance_matrix = self.graph_distance_matrix,
                                 centered_matrix = self.centered_matrix,
                                 solver_kwds = self.solver_kwds)
        return self 
開發者ID:mmp2,項目名稱:megaman,代碼行數:63,代碼來源:isomap.py

示例10: add_transform

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def add_transform(self, from_frame, to_frame, A2B):
        """Register a transform.

        Parameters
        ----------
        from_frame : str
            Name of the frame for which the transform is added in the to_frame
            coordinate system

        to_frame : str
            Name of the frame in which the transform is defined

        A2B : array-like, shape (4, 4)
            Homogeneous matrix that represents the transform from 'from_frame'
            to 'to_frame'

        Returns
        -------
        self : TransformManager
            This object for chaining
        """
        A2B = check_transform(A2B, strict_check=self.strict_check)
        if from_frame not in self.nodes:
            self.nodes.append(from_frame)
        if to_frame not in self.nodes:
            self.nodes.append(to_frame)

        if (from_frame, to_frame) not in self.transforms:
            self.i.append(self.nodes.index(from_frame))
            self.j.append(self.nodes.index(to_frame))

        self.transforms[(from_frame, to_frame)] = A2B

        n_nodes = len(self.nodes)
        self.connections = sp.csr_matrix(
            (np.zeros(len(self.i)), (self.i, self.j)),
            shape=(n_nodes, n_nodes))
        self.dist, self.predecessors = csgraph.shortest_path(
            self.connections, unweighted=True, directed=False, method="D",
            return_predecessors=True)

        return self 
開發者ID:rock-learning,項目名稱:pytransform3d,代碼行數:44,代碼來源:transform_manager.py


注:本文中的scipy.sparse.csgraph.shortest_path方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。