本文整理匯總了Python中scipy.sparse.csgraph.shortest_path方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.shortest_path方法的具體用法?Python csgraph.shortest_path怎麽用?Python csgraph.shortest_path使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.csgraph
的用法示例。
在下文中一共展示了csgraph.shortest_path方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: find_thresh
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def find_thresh(C, inf=0.5, sup=3, step=10):
""" Trick to find the adequate thresholds from where value of the C matrix are considered close enough to say that nodes are connected
Tthe threshold is found by a linesearch between values "inf" and "sup" with "step" thresholds tested.
The optimal threshold is the one which minimizes the reconstruction error between the shortest_path matrix coming from the thresholded adjency matrix
and the original matrix.
Parameters
----------
C : ndarray, shape (n_nodes,n_nodes)
The structure matrix to threshold
inf : float
The beginning of the linesearch
sup : float
The end of the linesearch
step : integer
Number of thresholds tested
"""
dist = []
search = np.linspace(inf, sup, step)
for thresh in search:
Cprime = sp_to_adjency(C, 0, thresh)
SC = shortest_path(Cprime, method='D')
SC[SC == float('inf')] = 100
dist.append(np.linalg.norm(SC - C))
return search[np.argmin(dist)], dist
示例2: compute_distance_matrix
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def compute_distance_matrix(self):
shape = self.layout.shape
moves = [(-1, 0), (1, 0), (0, -1), (0, 1)]
adj_matrix = np.zeros((self.layout.size, self.layout.size))
for (r, c) in self.valid_positions:
index = np.ravel_multi_index((r, c), shape)
for move in moves:
nr, nc = r + move[0], c + move[1]
if (nr, nc) in self.valid_positions:
nindex = np.ravel_multi_index((nr, nc), shape)
adj_matrix[index, nindex] = 1
self.dist_matrix = shortest_path(adj_matrix)
示例3: drnl_node_labeling
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def drnl_node_labeling(self, edge_index, src, dst, num_nodes=None):
# Double-radius node labeling (DRNL).
src, dst = (dst, src) if src > dst else (src, dst)
adj = to_scipy_sparse_matrix(edge_index, num_nodes=num_nodes).tocsr()
idx = list(range(src)) + list(range(src + 1, adj.shape[0]))
adj_wo_src = adj[idx, :][:, idx]
idx = list(range(dst)) + list(range(dst + 1, adj.shape[0]))
adj_wo_dst = adj[idx, :][:, idx]
dist2src = shortest_path(adj_wo_dst, directed=False, unweighted=True)
dist2src = dist2src[:, src]
dist2src = np.insert(dist2src, dst, 0, axis=0)
dist2src = torch.from_numpy(dist2src)
dist2dst = shortest_path(adj_wo_src, directed=False, unweighted=True)
dist2dst = dist2dst[:, dst - 1]
dist2dst = np.insert(dist2dst, src, 0, axis=0)
dist2dst = torch.from_numpy(dist2dst)
dist = dist2src + dist2dst
dist_over_2, dist_mod_2 = dist // 2, dist % 2
z = 1 + torch.min(dist2src, dist2dst)
z += dist_over_2 * (dist_over_2 + dist_mod_2 - 1)
z[src] = 1.
z[dst] = 1.
z[torch.isnan(z)] = 0.
self.__max_z__ = max(int(z.max()), self.__max_z__)
return z.to(torch.long)
示例4: create_routing_table
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def create_routing_table(self):
self.excluded_nodes, g_dense = Router.create_dense_matrix(self.graph, tuple(self.settings.items()))
self.shortest_paths, self.predecessors = Router.shortest_path(g_dense.tostring(), g_dense.shape)
示例5: shortest_path
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def shortest_path(cls, data, shape):
# let scipy do it's magic and calculate all shortest paths in the remaining graph
g_sparse = csr_matrix(np.ma.masked_values(np.fromstring(data).reshape(shape), 0))
return shortest_path(g_sparse, return_predecessors=True)
示例6: make_distance_matrix_from_adjacency_matrix
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def make_distance_matrix_from_adjacency_matrix(AG):
"""
Represent simple unweighted graph as compact metric space (with
integer distances) based on its shortest path lengths.
Parameters
-----------
AG: np.array (|V(G)|×|V(G)|)
(Sparse) adjacency matrix of simple unweighted graph G.
Returns
--------
DG: np.array (|V(G)|×|V(G)|)
(Dense) distance matrix of the compact metric space
representation of G based on its shortest path lengths.
"""
# Convert adjacency matrix to SciPy format if needed.
if not sps.issparse(AG) and not isinstance(AG, np.ndarray):
AG = np.asarray(AG)
# Compile distance matrix of the graph based on its shortest path
# lengths.
DG = shortest_path(AG, directed=False, unweighted=True)
# Ensure compactness of metric space, represented by distance
# matrix.
if np.any(np.isinf(DG)):
warnings.warn("disconnected graph is approximated by its largest connected component")
# Extract largest connected component of the graph.
_, components_by_vertex = connected_components(AG, directed=False)
components, component_sizes = np.unique(components_by_vertex, return_counts=True)
largest_component = components[np.argmax(component_sizes)]
DG = DG[components_by_vertex == largest_component]
# Cast distance matrix to optimal integer type.
DG = cast_distance_matrix_to_optimal_int_type(DG)
return DG
示例7: _d8_flow_distance
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def _d8_flow_distance(self, x, y, fdir, weights=None, dirmap=None, nodata_in=None,
nodata_out=0, out_name='dist', method='shortest', inplace=True,
xytype='index', apply_mask=True, ignore_metadata=False, properties={},
metadata={}, snap='corner', **kwargs):
# Construct flat index onto flow direction array
domain = np.arange(fdir.size)
fdir_orig_type = fdir.dtype
if nodata_in is None:
nodata_cells = np.zeros_like(fdir).astype(bool)
else:
if np.isnan(nodata_in):
nodata_cells = (np.isnan(fdir))
else:
nodata_cells = (fdir == nodata_in)
try:
mintype = np.min_scalar_type(fdir.size)
fdir = fdir.astype(mintype)
domain = domain.astype(mintype)
startnodes, endnodes = self._construct_matching(fdir, domain,
dirmap=dirmap)
if xytype == 'label':
x, y = self.nearest_cell(x, y, fdir.affine, snap)
# TODO: Currently the size of weights is hard to understand
if weights is not None:
weights = weights.ravel()
assert(weights.size == startnodes.size)
assert(weights.size == endnodes.size)
else:
assert(startnodes.size == endnodes.size)
weights = (~nodata_cells).ravel().astype(int)
C = scipy.sparse.lil_matrix((fdir.size, fdir.size))
for i,j,w in zip(startnodes, endnodes, weights):
C[i,j] = w
C = C.tocsr()
xyindex = np.ravel_multi_index((y, x), fdir.shape)
dist = csgraph.shortest_path(C, indices=[xyindex], directed=False)
dist[~np.isfinite(dist)] = nodata_out
dist = dist.ravel()
dist = dist.reshape(fdir.shape)
except:
raise
finally:
self._unflatten_fdir(fdir, domain, dirmap)
fdir = fdir.astype(fdir_orig_type)
# Prepare output
return self._output_handler(data=dist, out_name=out_name, properties=properties,
inplace=inplace, metadata=metadata)
示例8: _interpolate_lines
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def _interpolate_lines(clusters, elongation_offset, extent, st_map, end_map):
"""
Interpolates the baseline clusters and sets the correct line direction.
"""
logger.debug('Reticulating splines')
lines = []
extent = geom.Polygon([(0, 0), (extent[1]-1, 0), (extent[1]-1, extent[0]-1), (0, extent[0]-1), (0, 0)])
f_st_map = maximum_filter(st_map, size=20)
f_end_map = maximum_filter(end_map, size=20)
for cluster in clusters[1:]:
# find start-end point
points = [point for edge in cluster for point in edge]
dists = squareform(pdist(points))
i, j = np.unravel_index(dists.argmax(), dists.shape)
# build adjacency matrix for shortest path algo
adj_mat = np.full_like(dists, np.inf)
for l, r in cluster:
idx_l = points.index(l)
idx_r = points.index(r)
adj_mat[idx_l, idx_r] = dists[idx_l, idx_r]
# shortest path
_, pr = shortest_path(adj_mat, directed=False, return_predecessors=True, indices=i)
k = j
line = [points[j]]
while pr[k] != -9999:
k = pr[k]
line.append(points[k])
# smooth line
line = np.array(line[::-1])
line = approximate_polygon(line[:,[1,0]], 1)
lr_dir = line[0] - line[1]
lr_dir = (lr_dir.T / np.sqrt(np.sum(lr_dir**2,axis=-1))) * elongation_offset/2
line[0] = line[0] + lr_dir
rr_dir = line[-1] - line[-2]
rr_dir = (rr_dir.T / np.sqrt(np.sum(rr_dir**2,axis=-1))) * elongation_offset/2
line[-1] = line[-1] + rr_dir
ins = geom.LineString(line).intersection(extent)
if ins.type == 'MultiLineString':
ins = linemerge(ins)
# skip lines that don't merge cleanly
if ins.type != 'LineString':
continue
line = np.array(ins, dtype='uint')
l_end = tuple(line[0])[::-1]
r_end = tuple(line[-1])[::-1]
if f_st_map[l_end] - f_end_map[l_end] > 0.2 and f_st_map[r_end] - f_end_map[r_end] < -0.2:
pass
elif f_st_map[l_end] - f_end_map[l_end] < -0.2 and f_st_map[r_end] - f_end_map[r_end] > 0.2:
line = line[::-1]
else:
logger.debug('Insufficient marker confidences in output. Defaulting to upright line.')
if line[0][0] > line[-1][0]:
line = line[::-1]
lines.append(line.tolist())
return lines
示例9: fit
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def fit(self, X, y=None, input_type='data'):
"""Fit the model from data in X.
Parameters
----------
input_type : string, one of: 'data', 'distance'.
The values of input data X. (default = 'data')
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples in the number of samples
and n_features is the number of features.
If self.input_type is 'distance':
X : array-like, shape (n_samples, n_samples),
Interpret X as precomputed distance or adjacency graph
computed from samples.
eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
The eigenvalue decomposition strategy to use. AMG requires pyamg
to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities.
Returns
-------
self : object
Returns the instance itself.
"""
X = self._validate_input(X, input_type)
self.fit_geometry(X, input_type)
if not hasattr(self, 'distance_matrix'):
self.distance_matrix = None
if not hasattr(self, 'graph_distance_matrix'):
self.graph_distance_matrix = None
if not hasattr(self, 'centered_matrix'):
self.centered_matrix = None
# don't re-compute these if it's already been done.
# This might be the case if an eigendecompostion fails and a different sovler is selected
if (self.distance_matrix is None and self.geom_.adjacency_matrix is None):
self.distance_matrix = self.geom_.compute_adjacency_matrix()
elif self.distance_matrix is None:
self.distance_matrix = self.geom_.adjacency_matrix
if self.graph_distance_matrix is None:
self.graph_distance_matrix = graph_shortest_path(self.distance_matrix,
method = self.path_method,
directed = False)
if self.centered_matrix is None:
self.centered_matrix = center_matrix(self.graph_distance_matrix)
self.embedding_ = isomap(self.geom_, n_components=self.n_components,
eigen_solver=self.eigen_solver,
random_state=self.random_state,
path_method = self.path_method,
distance_matrix = self.distance_matrix,
graph_distance_matrix = self.graph_distance_matrix,
centered_matrix = self.centered_matrix,
solver_kwds = self.solver_kwds)
return self
示例10: add_transform
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import shortest_path [as 別名]
def add_transform(self, from_frame, to_frame, A2B):
"""Register a transform.
Parameters
----------
from_frame : str
Name of the frame for which the transform is added in the to_frame
coordinate system
to_frame : str
Name of the frame in which the transform is defined
A2B : array-like, shape (4, 4)
Homogeneous matrix that represents the transform from 'from_frame'
to 'to_frame'
Returns
-------
self : TransformManager
This object for chaining
"""
A2B = check_transform(A2B, strict_check=self.strict_check)
if from_frame not in self.nodes:
self.nodes.append(from_frame)
if to_frame not in self.nodes:
self.nodes.append(to_frame)
if (from_frame, to_frame) not in self.transforms:
self.i.append(self.nodes.index(from_frame))
self.j.append(self.nodes.index(to_frame))
self.transforms[(from_frame, to_frame)] = A2B
n_nodes = len(self.nodes)
self.connections = sp.csr_matrix(
(np.zeros(len(self.i)), (self.i, self.j)),
shape=(n_nodes, n_nodes))
self.dist, self.predecessors = csgraph.shortest_path(
self.connections, unweighted=True, directed=False, method="D",
return_predecessors=True)
return self