本文整理匯總了Python中scipy.sparse.csgraph.minimum_spanning_tree方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.minimum_spanning_tree方法的具體用法?Python csgraph.minimum_spanning_tree怎麽用?Python csgraph.minimum_spanning_tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.csgraph
的用法示例。
在下文中一共展示了csgraph.minimum_spanning_tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def __init__(
self,
adata,
groups=None,
vkey=None,
use_time_prior=None,
root_key=None,
end_key=None,
threshold_root_end_prior=None,
minimum_spanning_tree=None,
):
super().__init__(adata=adata, groups=groups, model="v1.2")
self.groups = groups
self.vkey = vkey
self.use_time_prior = use_time_prior
self.root_key = root_key
self.end_key = end_key
self.threshold_root_end_prior = threshold_root_end_prior
if self.threshold_root_end_prior is None:
self.threshold_root_end_prior = 0.9
self.minimum_spanning_tree = minimum_spanning_tree
示例2: _mutual_reach_dist_MST
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _mutual_reach_dist_MST(dist_tree):
"""
Computes minimum spanning tree of the mutual reach distance complete graph
Args:
dist_tree (np.ndarray): array of dimensions (n_samples, n_samples)
Graph of all pair-wise mutual reachability distances
between points.
Returns: minimum_spanning_tree (np.ndarray)
array of dimensions (n_samples, n_samples)
minimum spanning tree of all pair-wise mutual reachability
distances between points.
"""
mst = minimum_spanning_tree(dist_tree).toarray()
return mst + np.transpose(mst)
示例3: _place_mst_paths
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _place_mst_paths(d, routers, idx, idy, dists):
# calc mst
mat = csr_matrix((dists, (idx, idy)), shape=(len(routers), len(routers)))
Tmat = minimum_spanning_tree(mat).toarray()
# place cabels
for i, r in enumerate(Tmat):
for j, c in enumerate(r):
if Tmat[i, j] > 0:
cables = find_chess_connection(routers[i], routers[j])
for cable in cables:
if cable == d['backbone']:
continue
if d['graph'][cable] == Cell.Router:
d['graph'][cable] = Cell.ConnectedRouter
else:
d['graph'][cable] = Cell.Cable
for router in routers:
if router == d['backbone']:
continue
d['graph'][router] = Cell.ConnectedRouter
return d
示例4: sync_perm_mat
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def sync_perm_mat(match_perms_all, match_cost, n_atoms):
tree = minimum_spanning_tree(match_cost, overwrite=True)
perms = np.arange(n_atoms, dtype=int)[None, :]
rows, cols = tree.nonzero()
for com in zip(rows, cols):
perm = match_perms_all.get(com)
if perm is not None:
perms = np.vstack((perms, perm))
perms = np.unique(perms, axis=0)
ui.progr_toggle(
is_done=True, disp_str='Multi-partite matching (permutation synchronization)'
)
return perms
示例5: logo3
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def logo3():
viznet.setting.node_setting['inner_lw'] = 0
viznet.setting.node_setting['lw'] = 0
npoint = 60
nedge = 50
angle = random(npoint)*2*np.pi
#r = np.exp(randn(npoint)*0.4)
r = np.sqrt(randn(npoint))
xy = np.array([r*np.cos(angle), r*np.sin(angle)]).T
#xy = randn(npoint, 2)*0.5
with viznet.DynamicShow(figsize=(4,4), filename='_logo3.png') as ds:
#body = viznet.NodeBrush('tn.mps', size='huge', color='#AACCFF') >> (0, 0)
dot = viznet.NodeBrush('tn.mps', size='tiny')
node_list = []
for i, p in enumerate(xy):
dot.color = random(3)*0.5+0.5
dot.zorder = 100+i*2
dot.size = 0.05+0.08*random()
node_list.append(dot >> p)
dis_mat = np.linalg.norm(xy-xy[:,None,:], axis=-1)
tree = minimum_spanning_tree(dis_mat).tocoo()
for i, j in zip(tree.row, tree.col):
n1,n2=node_list[i],node_list[j]
viznet.EdgeBrush(choice(['.>.', '.>.']), lw=1, color=random([3])*0.4, zorder=(n1.obj.zorder+n2.obj.zorder)/2) >> (n1,n2)
#for i in range(nedge):
# n1, n2 =choice(node_list),choice(node_list)
# viznet.EdgeBrush(choice(['.>.', '->-']), lw=1, color=random([3])*0.4, zorder=(n1.obj.zorder+n2.obj.zorder)/2) >> (n1,n2)
示例6: _get_connectivities_tree_v1_2
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _get_connectivities_tree_v1_2(self):
inverse_connectivities = self.connectivities.copy()
inverse_connectivities.data = 1./inverse_connectivities.data
connectivities_tree = minimum_spanning_tree(inverse_connectivities)
connectivities_tree_indices = [
connectivities_tree[i].nonzero()[1]
for i in range(connectivities_tree.shape[0])]
connectivities_tree = sp.sparse.lil_matrix(self.connectivities.shape, dtype=float)
for i, neighbors in enumerate(connectivities_tree_indices):
if len(neighbors) > 0:
connectivities_tree[i, neighbors] = self.connectivities[i, neighbors]
return connectivities_tree.tocsr()
示例7: _get_connectivities_tree_v1_0
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _get_connectivities_tree_v1_0(self, inter_es):
inverse_inter_es = inter_es.copy()
inverse_inter_es.data = 1./inverse_inter_es.data
connectivities_tree = minimum_spanning_tree(inverse_inter_es)
connectivities_tree_indices = [
connectivities_tree[i].nonzero()[1]
for i in range(connectivities_tree.shape[0])]
connectivities_tree = sp.sparse.lil_matrix(inter_es.shape, dtype=float)
for i, neighbors in enumerate(connectivities_tree_indices):
if len(neighbors) > 0:
connectivities_tree[i, neighbors] = self.connectivities[i, neighbors]
return connectivities_tree.tocsr()
示例8: _mst
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _mst(d, new_router, routers=[], idx=[], idy=[], dists=[]):
new_id = len(routers)
# calc new router dists
for i, a in enumerate(routers):
dist = chessboard_dist(a, new_router)
if dist > 0:
idx.append(i)
idy.append(new_id)
dists.append(dist)
# add new router
routers.append(new_router)
# create matrix
mat = csr_matrix((dists, (idx, idy)), shape=(len(routers), len(routers)))
# minimal spanning tree
Tmat = minimum_spanning_tree(mat)
# check costs
cost = np.sum(Tmat) * d['price_backbone'] + (len(routers) - 1) * d['price_router']
succ = cost <= d['original_budget']
# return
return succ, cost, routers, idx, idy, dists
示例9: get_MST
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def get_MST(symbol_candidate_list):
symbol_num = len(symbol_candidate_list)
symbol_dis = [[0.0 for x in xrange(int(symbol_num))] for x in xrange(int(symbol_num))]
for i in range(symbol_num):
for j in range(symbol_num):
if j > i:
symbol_dis[i][j] = symbol_candidate_list[i].closest_distance(symbol_candidate_list[j])
symbol_dis_matrix = csr_matrix(symbol_dis)
Tcsr = minimum_spanning_tree(symbol_dis_matrix)
MST = Tcsr.toarray()
return MST
示例10: mkNN
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def mkNN(X, k, measure='euclidean'):
"""
Construct mutual_kNN for large scale dataset
If j is one of i's closest neighbors and i is also one of j's closest members,
the edge will appear once with (i,j) where i < j.
Parameters
----------
X : [n_samples, n_dim] array
k : int
number of neighbors for each sample in X
"""
from scipy.spatial import distance
from scipy.sparse import csr_matrix, triu, find
from scipy.sparse.csgraph import minimum_spanning_tree
samples = X.shape[0]
batchsize = 10000
b = np.arange(k + 1)
b = tuple(b[1:].ravel())
z = np.zeros((samples, k))
weigh = np.zeros_like(z)
# This loop speeds up the computation by operating in batches
# This can be parallelized to further utilize CPU/GPU resource
for x in np.arange(0, samples, batchsize):
start = x
end = min(x + batchsize, samples)
w = distance.cdist(X[start:end], X, measure)
y = np.argpartition(w, b, axis=1)
z[start:end, :] = y[:, 1:k + 1]
weigh[start:end, :] = np.reshape(w[tuple(np.repeat(np.arange(end - start), k)), tuple(y[:, 1:k + 1].ravel())],
(end - start, k))
del (w)
ind = np.repeat(np.arange(samples), k)
P = csr_matrix((np.ones((samples * k)), (ind.ravel(), z.ravel())), shape=(samples, samples))
Q = csr_matrix((weigh.ravel(), (ind.ravel(), z.ravel())), shape=(samples, samples))
Tcsr = minimum_spanning_tree(Q)
P = P.minimum(P.transpose()) + Tcsr.maximum(Tcsr.transpose())
P = triu(P, k=1)
return np.asarray(find(P)).T
示例11: m_knn
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def m_knn(X, k, measure='euclidean'):
"""
This code is taken from:
https://bitbucket.org/sohilas/robust-continuous-clustering/src/
The original terms of the license apply.
Construct mutual_kNN for large scale dataset
If j is one of i's closest neighbors and i is also one of j's closest members,
the edge will appear once with (i,j) where i < j.
Parameters
----------
X (array) 2d array of data of shape (n_samples, n_dim)
k (int) number of neighbors for each sample in X
measure (string) distance metric, one of 'cosine' or 'euclidean'
"""
samples = X.shape[0]
batch_size = 10000
b = np.arange(k+1)
b = tuple(b[1:].ravel())
z = np.zeros((samples, k))
weigh = np.zeros_like(z)
# This loop speeds up the computation by operating in batches
# This can be parallelized to further utilize CPU/GPU resource
for x in np.arange(0, samples, batch_size):
start = x
end = min(x+batch_size, samples)
w = distance.cdist(X[start:end], X, measure)
y = np.argpartition(w, b, axis=1)
z[start:end, :] = y[:, 1:k + 1]
weigh[start:end, :] = np.reshape(w[tuple(np.repeat(np.arange(end-start), k)),
tuple(y[:, 1:k+1].ravel())], (end-start, k))
del w
ind = np.repeat(np.arange(samples), k)
P = csr_matrix((np.ones((samples*k)), (ind.ravel(), z.ravel())), shape=(samples, samples))
Q = csr_matrix((weigh.ravel(), (ind.ravel(), z.ravel())), shape=(samples, samples))
Tcsr = minimum_spanning_tree(Q)
P = P.minimum(P.transpose()) + Tcsr.maximum(Tcsr.transpose())
P = triu(P, k=1)
V = np.asarray(find(P)).T
return V[:, :2].astype(np.int32)
示例12: test_minimum_spanning_tree
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def test_minimum_spanning_tree():
# Create a graph with two connected components.
graph = [[0,1,0,0,0],
[1,0,0,0,0],
[0,0,0,8,5],
[0,0,8,0,1],
[0,0,5,1,0]]
graph = np.asarray(graph)
# Create the expected spanning tree.
expected = [[0,1,0,0,0],
[0,0,0,0,0],
[0,0,0,0,5],
[0,0,0,0,1],
[0,0,0,0,0]]
expected = np.asarray(expected)
# Ensure minimum spanning tree code gives this expected output.
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')
# Ensure that the original graph was not modified.
npt.assert_array_equal(csgraph.todense(), graph,
'Original graph was modified.')
# Now let the algorithm modify the csgraph in place.
mintree = minimum_spanning_tree(csgraph, overwrite=True)
npt.assert_array_equal(mintree.todense(), expected,
'Graph was not properly modified to contain MST.')
np.random.seed(1234)
for N in (5, 10, 15, 20):
# Create a random graph.
graph = 3 + np.random.random((N, N))
csgraph = csr_matrix(graph)
# The spanning tree has at most N - 1 edges.
mintree = minimum_spanning_tree(csgraph)
assert_(mintree.nnz < N)
# Set the sub diagonal to 1 to create a known spanning tree.
idx = np.arange(N-1)
graph[idx,idx+1] = 1
csgraph = csr_matrix(graph)
mintree = minimum_spanning_tree(csgraph)
# We expect to see this pattern in the spanning tree and otherwise
# have this zero.
expected = np.zeros((N, N))
expected[idx, idx+1] = 1
npt.assert_array_equal(mintree.todense(), expected,
'Incorrect spanning tree found.')
示例13: _single_linkage_tree
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _single_linkage_tree(connectivity, n_samples, n_nodes, n_clusters,
n_connected_components, return_distance):
"""
Perform single linkage clustering on sparse data via the minimum
spanning tree from scipy.sparse.csgraph, then using union-find to label.
The parent array is then generated by walking through the tree.
"""
from scipy.sparse.csgraph import minimum_spanning_tree
# explicitly cast connectivity to ensure safety
connectivity = connectivity.astype('float64',
**_astype_copy_false(connectivity))
# Ensure zero distances aren't ignored by setting them to "epsilon"
epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
connectivity.data[connectivity.data == 0] = epsilon_value
# Use scipy.sparse.csgraph to generate a minimum spanning tree
mst = minimum_spanning_tree(connectivity.tocsr())
# Convert the graph to scipy.cluster.hierarchy array format
mst = mst.tocoo()
# Undo the epsilon values
mst.data[mst.data == epsilon_value] = 0
mst_array = np.vstack([mst.row, mst.col, mst.data]).T
# Sort edges of the min_spanning_tree by weight
mst_array = mst_array[np.argsort(mst_array.T[2]), :]
# Convert edge list into standard hierarchical clustering format
single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
children_ = single_linkage_tree[:, :2].astype(np.int)
# Compute parents
parent = np.arange(n_nodes, dtype=np.intp)
for i, (left, right) in enumerate(children_, n_samples):
if n_clusters is not None and i >= n_nodes:
break
if left < n_nodes:
parent[left] = i
if right < n_nodes:
parent[right] = i
if return_distance:
distances = single_linkage_tree[:, 2]
return children_, n_connected_components, n_samples, parent, distances
return children_, n_connected_components, n_samples, parent
###############################################################################
# Hierarchical tree building functions
示例14: friedman_rafsky
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def friedman_rafsky(x, y):
"""
Compute a dissimilarity metric based on the Friedman-Rafsky runs statistics.
The algorithm builds a minimal spanning tree (the subset of edges
connecting all points that minimizes the total edge length) then counts
the edges linking points from the same distribution.
Parameters
----------
x : ndarray (n,d)
Reference sample.
y : ndarray (m,d)
Candidate sample.
Returns
-------
float
Friedman-Rafsky dissimilarity metric ranging from 0 to (m+n-1)/(m+n).
References
----------
Friedman J.H. and Rafsky L.C. (1979) Multivariate generaliations of the
Wald-Wolfowitz and Smirnov two-sample tests. Annals of Stat. Vol.7,
No. 4, 697-717.
"""
from sklearn import neighbors
from scipy.sparse.csgraph import minimum_spanning_tree
x, y = reshape_sample(x, y)
nx, _ = x.shape
ny, _ = y.shape
n = nx + ny
xy = np.vstack([x, y])
# Compute the NNs and the minimum spanning tree
g = neighbors.kneighbors_graph(xy, n_neighbors=n - 1, mode='distance')
mst = minimum_spanning_tree(g, overwrite=True)
edges = np.array(mst.nonzero()).T
# Number of points whose neighbor is from the other sample
diff = np.logical_xor(*(edges < nx).T).sum()
return 1. - (1. + diff) / n
示例15: _randomly_divide_connected_graph
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _randomly_divide_connected_graph(adj, n_regions):
"""
Divide the provided connected graph into `n_regions` regions.
Parameters
----------
adj : :class:`scipy.sparse.csr_matrix`
Adjacency matrix.
n_regions : int
The desired number of clusters. Must be > 0 and <= number of nodes.
Returns
-------
labels : :class:`numpy.ndarray`
Each element (an integer in {0, ..., `n_regions` - 1}) specifies the
region an area (defined by the index in the array) belongs to.
Examples
--------
>>> from scipy.sparse import diags
>>> n_nodes = 10
>>> adj_diagonal = [1] * (n_nodes-1)
>>> # 10x10 adjacency matrix representing the path 0-1-2-...-9-10
>>> adj = diags([adj_diagonal, adj_diagonal], offsets=[-1, 1])
>>> n_regions_desired = 4
>>> labels = _randomly_divide_connected_graph(adj, n_regions_desired)
>>> n_regions_obtained = len(set(labels))
>>> n_regions_desired == n_regions_obtained
True
"""
if not n_regions > 0:
msg = "n_regions is {} but must be positive.".format(n_regions)
raise ValueError(msg)
n_areas = adj.shape[0]
if not n_regions <= n_areas:
msg = (
"n_regions is {} but must less than or equal to "
+ "the number of nodes which is {}".format(n_regions, n_areas)
)
raise ValueError(msg)
mst = csg.minimum_spanning_tree(adj)
for _ in range(n_regions - 1):
# try different links to cut and pick the one leading to the most
# balanced solution
best_link = None
max_region_size = float("inf")
for __ in range(5):
mst_copy = mst.copy()
nonzero_i, nonzero_j = mst_copy.nonzero()
random_position = random.randrange(len(nonzero_i))
i, j = nonzero_i[random_position], nonzero_j[random_position]
mst_copy[i, j] = 0
mst_copy.eliminate_zeros()
labels = csg.connected_components(mst_copy, directed=False)[1]
max_size = max(np.unique(labels, return_counts=True)[1])
if max_size < max_region_size:
best_link = (i, j)
max_region_size = max_size
mst[best_link[0], best_link[1]] = 0
mst.eliminate_zeros()
return csg.connected_components(mst)[1]