當前位置: 首頁>>代碼示例>>Python>>正文


Python csgraph.minimum_spanning_tree方法代碼示例

本文整理匯總了Python中scipy.sparse.csgraph.minimum_spanning_tree方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.minimum_spanning_tree方法的具體用法?Python csgraph.minimum_spanning_tree怎麽用?Python csgraph.minimum_spanning_tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.csgraph的用法示例。


在下文中一共展示了csgraph.minimum_spanning_tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def __init__(
        self,
        adata,
        groups=None,
        vkey=None,
        use_time_prior=None,
        root_key=None,
        end_key=None,
        threshold_root_end_prior=None,
        minimum_spanning_tree=None,
    ):
        super().__init__(adata=adata, groups=groups, model="v1.2")
        self.groups = groups
        self.vkey = vkey
        self.use_time_prior = use_time_prior
        self.root_key = root_key
        self.end_key = end_key
        self.threshold_root_end_prior = threshold_root_end_prior
        if self.threshold_root_end_prior is None:
            self.threshold_root_end_prior = 0.9
        self.minimum_spanning_tree = minimum_spanning_tree 
開發者ID:theislab,項目名稱:scvelo,代碼行數:23,代碼來源:paga.py

示例2: _mutual_reach_dist_MST

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _mutual_reach_dist_MST(dist_tree):
    """
    Computes minimum spanning tree of the mutual reach distance complete graph

    Args:
        dist_tree (np.ndarray): array of dimensions (n_samples, n_samples)
            Graph of all pair-wise mutual reachability distances
            between points.

    Returns: minimum_spanning_tree (np.ndarray)
        array of dimensions (n_samples, n_samples)
        minimum spanning tree of all pair-wise mutual reachability
            distances between points.
    """
    mst = minimum_spanning_tree(dist_tree).toarray()
    return mst + np.transpose(mst) 
開發者ID:christopherjenness,項目名稱:DBCV,代碼行數:18,代碼來源:DBCV.py

示例3: _place_mst_paths

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _place_mst_paths(d, routers, idx, idy, dists):
    # calc mst
    mat = csr_matrix((dists, (idx, idy)), shape=(len(routers), len(routers)))
    Tmat = minimum_spanning_tree(mat).toarray()

    # place cabels
    for i, r in enumerate(Tmat):
        for j, c in enumerate(r):
            if Tmat[i, j] > 0:
                cables = find_chess_connection(routers[i], routers[j])
                for cable in cables:
                    if cable == d['backbone']:
                        continue
                    if d['graph'][cable] == Cell.Router:
                        d['graph'][cable] = Cell.ConnectedRouter
                    else:
                        d['graph'][cable] = Cell.Cable

    for router in routers:
        if router == d['backbone']:
            continue
        d['graph'][router] = Cell.ConnectedRouter

    return d 
開發者ID:sbrodehl,項目名稱:HashCode,代碼行數:26,代碼來源:best_solution_in_the_wuuuuuuurld.py

示例4: sync_perm_mat

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def sync_perm_mat(match_perms_all, match_cost, n_atoms):

    tree = minimum_spanning_tree(match_cost, overwrite=True)

    perms = np.arange(n_atoms, dtype=int)[None, :]
    rows, cols = tree.nonzero()
    for com in zip(rows, cols):
        perm = match_perms_all.get(com)
        if perm is not None:
            perms = np.vstack((perms, perm))
    perms = np.unique(perms, axis=0)
    ui.progr_toggle(
        is_done=True, disp_str='Multi-partite matching (permutation synchronization)'
    )

    return perms 
開發者ID:stefanch,項目名稱:sGDML,代碼行數:18,代碼來源:perm.py

示例5: logo3

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def logo3():
    viznet.setting.node_setting['inner_lw'] = 0
    viznet.setting.node_setting['lw'] = 0
    npoint = 60
    nedge = 50
    angle = random(npoint)*2*np.pi
    #r = np.exp(randn(npoint)*0.4)
    r = np.sqrt(randn(npoint))
    xy = np.array([r*np.cos(angle), r*np.sin(angle)]).T
    #xy = randn(npoint, 2)*0.5
    with viznet.DynamicShow(figsize=(4,4), filename='_logo3.png') as ds:
        #body = viznet.NodeBrush('tn.mps', size='huge', color='#AACCFF') >> (0, 0)
        dot = viznet.NodeBrush('tn.mps', size='tiny')
        node_list = []
        for i, p in enumerate(xy):
            dot.color = random(3)*0.5+0.5
            dot.zorder = 100+i*2
            dot.size = 0.05+0.08*random()
            node_list.append(dot >> p)
        dis_mat = np.linalg.norm(xy-xy[:,None,:], axis=-1)
        tree = minimum_spanning_tree(dis_mat).tocoo()
        for i, j in zip(tree.row, tree.col):
            n1,n2=node_list[i],node_list[j]
            viznet.EdgeBrush(choice(['.>.', '.>.']), lw=1, color=random([3])*0.4, zorder=(n1.obj.zorder+n2.obj.zorder)/2) >> (n1,n2)
        #for i in range(nedge):
        #    n1, n2 =choice(node_list),choice(node_list)
         #   viznet.EdgeBrush(choice(['.>.', '->-']), lw=1, color=random([3])*0.4, zorder=(n1.obj.zorder+n2.obj.zorder)/2) >> (n1,n2) 
開發者ID:GiggleLiu,項目名稱:viznet,代碼行數:29,代碼來源:logo.py

示例6: _get_connectivities_tree_v1_2

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _get_connectivities_tree_v1_2(self):
        inverse_connectivities = self.connectivities.copy()
        inverse_connectivities.data = 1./inverse_connectivities.data
        connectivities_tree = minimum_spanning_tree(inverse_connectivities)
        connectivities_tree_indices = [
            connectivities_tree[i].nonzero()[1]
            for i in range(connectivities_tree.shape[0])]
        connectivities_tree = sp.sparse.lil_matrix(self.connectivities.shape, dtype=float)
        for i, neighbors in enumerate(connectivities_tree_indices):
            if len(neighbors) > 0:
                connectivities_tree[i, neighbors] = self.connectivities[i, neighbors]
        return connectivities_tree.tocsr() 
開發者ID:theislab,項目名稱:scanpy,代碼行數:14,代碼來源:_paga.py

示例7: _get_connectivities_tree_v1_0

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _get_connectivities_tree_v1_0(self, inter_es):
        inverse_inter_es = inter_es.copy()
        inverse_inter_es.data = 1./inverse_inter_es.data
        connectivities_tree = minimum_spanning_tree(inverse_inter_es)
        connectivities_tree_indices = [
            connectivities_tree[i].nonzero()[1]
            for i in range(connectivities_tree.shape[0])]
        connectivities_tree = sp.sparse.lil_matrix(inter_es.shape, dtype=float)
        for i, neighbors in enumerate(connectivities_tree_indices):
            if len(neighbors) > 0:
                connectivities_tree[i, neighbors] = self.connectivities[i, neighbors]
        return connectivities_tree.tocsr() 
開發者ID:theislab,項目名稱:scanpy,代碼行數:14,代碼來源:_paga.py

示例8: _mst

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _mst(d, new_router, routers=[], idx=[], idy=[], dists=[]):

    new_id = len(routers)

    # calc new router dists
    for i, a in enumerate(routers):
        dist = chessboard_dist(a, new_router)
        if dist > 0:
            idx.append(i)
            idy.append(new_id)
            dists.append(dist)

    # add new router
    routers.append(new_router)
    # create matrix
    mat = csr_matrix((dists, (idx, idy)), shape=(len(routers), len(routers)))

    # minimal spanning tree
    Tmat = minimum_spanning_tree(mat)

    # check costs
    cost = np.sum(Tmat) * d['price_backbone'] + (len(routers) - 1) * d['price_router']
    succ = cost <= d['original_budget']

    # return
    return succ, cost, routers, idx, idy, dists 
開發者ID:sbrodehl,項目名稱:HashCode,代碼行數:28,代碼來源:best_solution_in_the_wuuuuuuurld.py

示例9: get_MST

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def get_MST(symbol_candidate_list):
        symbol_num = len(symbol_candidate_list)
        symbol_dis = [[0.0 for x in xrange(int(symbol_num))] for x in xrange(int(symbol_num))]
        for i in range(symbol_num):
                for j in range(symbol_num):
                        if j > i:
                                symbol_dis[i][j] =  symbol_candidate_list[i].closest_distance(symbol_candidate_list[j])

        symbol_dis_matrix = csr_matrix(symbol_dis)
        Tcsr = minimum_spanning_tree(symbol_dis_matrix)
        MST = Tcsr.toarray()
        return MST 
開發者ID:DPRL,項目名稱:CROHME_2014,代碼行數:14,代碼來源:DPRL.py

示例10: mkNN

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def mkNN(X, k, measure='euclidean'):
    """
    Construct mutual_kNN for large scale dataset

    If j is one of i's closest neighbors and i is also one of j's closest members,
    the edge will appear once with (i,j) where i < j.

    Parameters
    ----------
    X : [n_samples, n_dim] array
    k : int
      number of neighbors for each sample in X
    """
    from scipy.spatial import distance
    from scipy.sparse import csr_matrix, triu, find
    from scipy.sparse.csgraph import minimum_spanning_tree

    samples = X.shape[0]
    batchsize = 10000
    b = np.arange(k + 1)
    b = tuple(b[1:].ravel())

    z = np.zeros((samples, k))
    weigh = np.zeros_like(z)

    # This loop speeds up the computation by operating in batches
    # This can be parallelized to further utilize CPU/GPU resource
    for x in np.arange(0, samples, batchsize):
        start = x
        end = min(x + batchsize, samples)

        w = distance.cdist(X[start:end], X, measure)

        y = np.argpartition(w, b, axis=1)

        z[start:end, :] = y[:, 1:k + 1]
        weigh[start:end, :] = np.reshape(w[tuple(np.repeat(np.arange(end - start), k)), tuple(y[:, 1:k + 1].ravel())],
                                         (end - start, k))
        del (w)

    ind = np.repeat(np.arange(samples), k)

    P = csr_matrix((np.ones((samples * k)), (ind.ravel(), z.ravel())), shape=(samples, samples))
    Q = csr_matrix((weigh.ravel(), (ind.ravel(), z.ravel())), shape=(samples, samples))

    Tcsr = minimum_spanning_tree(Q)
    P = P.minimum(P.transpose()) + Tcsr.maximum(Tcsr.transpose())
    P = triu(P, k=1)

    return np.asarray(find(P)).T 
開發者ID:shahsohil,項目名稱:DCC,代碼行數:52,代碼來源:edgeConstruction.py

示例11: m_knn

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def m_knn(X, k, measure='euclidean'):
        """
        This code is taken from:
        https://bitbucket.org/sohilas/robust-continuous-clustering/src/
        The original terms of the license apply.
        Construct mutual_kNN for large scale dataset

        If j is one of i's closest neighbors and i is also one of j's closest members,
        the edge will appear once with (i,j) where i < j.

        Parameters
        ----------
        X (array) 2d array of data of shape (n_samples, n_dim)
        k (int) number of neighbors for each sample in X
        measure (string) distance metric, one of 'cosine' or 'euclidean'
        """

        samples = X.shape[0]
        batch_size = 10000
        b = np.arange(k+1)
        b = tuple(b[1:].ravel())

        z = np.zeros((samples, k))
        weigh = np.zeros_like(z)

        # This loop speeds up the computation by operating in batches
        # This can be parallelized to further utilize CPU/GPU resource

        for x in np.arange(0, samples, batch_size):
            start = x
            end = min(x+batch_size, samples)

            w = distance.cdist(X[start:end], X, measure)

            y = np.argpartition(w, b, axis=1)

            z[start:end, :] = y[:, 1:k + 1]
            weigh[start:end, :] = np.reshape(w[tuple(np.repeat(np.arange(end-start), k)),
                                               tuple(y[:, 1:k+1].ravel())], (end-start, k))
            del w

        ind = np.repeat(np.arange(samples), k)

        P = csr_matrix((np.ones((samples*k)), (ind.ravel(), z.ravel())), shape=(samples, samples))
        Q = csr_matrix((weigh.ravel(), (ind.ravel(), z.ravel())), shape=(samples, samples))

        Tcsr = minimum_spanning_tree(Q)
        P = P.minimum(P.transpose()) + Tcsr.maximum(Tcsr.transpose())
        P = triu(P, k=1)

        V = np.asarray(find(P)).T
        return V[:, :2].astype(np.int32) 
開發者ID:yhenon,項目名稱:pyrcc,代碼行數:54,代碼來源:rcc.py

示例12: test_minimum_spanning_tree

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def test_minimum_spanning_tree():

    # Create a graph with two connected components.
    graph = [[0,1,0,0,0],
             [1,0,0,0,0],
             [0,0,0,8,5],
             [0,0,8,0,1],
             [0,0,5,1,0]]
    graph = np.asarray(graph)

    # Create the expected spanning tree.
    expected = [[0,1,0,0,0],
                [0,0,0,0,0],
                [0,0,0,0,5],
                [0,0,0,0,1],
                [0,0,0,0,0]]
    expected = np.asarray(expected)

    # Ensure minimum spanning tree code gives this expected output.
    csgraph = csr_matrix(graph)
    mintree = minimum_spanning_tree(csgraph)
    npt.assert_array_equal(mintree.todense(), expected,
        'Incorrect spanning tree found.')

    # Ensure that the original graph was not modified.
    npt.assert_array_equal(csgraph.todense(), graph,
        'Original graph was modified.')

    # Now let the algorithm modify the csgraph in place.
    mintree = minimum_spanning_tree(csgraph, overwrite=True)
    npt.assert_array_equal(mintree.todense(), expected,
        'Graph was not properly modified to contain MST.')

    np.random.seed(1234)
    for N in (5, 10, 15, 20):

        # Create a random graph.
        graph = 3 + np.random.random((N, N))
        csgraph = csr_matrix(graph)

        # The spanning tree has at most N - 1 edges.
        mintree = minimum_spanning_tree(csgraph)
        assert_(mintree.nnz < N)

        # Set the sub diagonal to 1 to create a known spanning tree.
        idx = np.arange(N-1)
        graph[idx,idx+1] = 1
        csgraph = csr_matrix(graph)
        mintree = minimum_spanning_tree(csgraph)

        # We expect to see this pattern in the spanning tree and otherwise
        # have this zero.
        expected = np.zeros((N, N))
        expected[idx, idx+1] = 1

        npt.assert_array_equal(mintree.todense(), expected,
            'Incorrect spanning tree found.') 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:59,代碼來源:test_spanning_tree.py

示例13: _single_linkage_tree

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _single_linkage_tree(connectivity, n_samples, n_nodes, n_clusters,
                         n_connected_components, return_distance):
    """
    Perform single linkage clustering on sparse data via the minimum
    spanning tree from scipy.sparse.csgraph, then using union-find to label.
    The parent array is then generated by walking through the tree.
    """
    from scipy.sparse.csgraph import minimum_spanning_tree

    # explicitly cast connectivity to ensure safety
    connectivity = connectivity.astype('float64',
                                       **_astype_copy_false(connectivity))

    # Ensure zero distances aren't ignored by setting them to "epsilon"
    epsilon_value = np.finfo(dtype=connectivity.data.dtype).eps
    connectivity.data[connectivity.data == 0] = epsilon_value

    # Use scipy.sparse.csgraph to generate a minimum spanning tree
    mst = minimum_spanning_tree(connectivity.tocsr())

    # Convert the graph to scipy.cluster.hierarchy array format
    mst = mst.tocoo()

    # Undo the epsilon values
    mst.data[mst.data == epsilon_value] = 0

    mst_array = np.vstack([mst.row, mst.col, mst.data]).T

    # Sort edges of the min_spanning_tree by weight
    mst_array = mst_array[np.argsort(mst_array.T[2]), :]

    # Convert edge list into standard hierarchical clustering format
    single_linkage_tree = _hierarchical._single_linkage_label(mst_array)
    children_ = single_linkage_tree[:, :2].astype(np.int)

    # Compute parents
    parent = np.arange(n_nodes, dtype=np.intp)
    for i, (left, right) in enumerate(children_, n_samples):
        if n_clusters is not None and i >= n_nodes:
            break
        if left < n_nodes:
            parent[left] = i
        if right < n_nodes:
            parent[right] = i

    if return_distance:
        distances = single_linkage_tree[:, 2]
        return children_, n_connected_components, n_samples, parent, distances
    return children_, n_connected_components, n_samples, parent


###############################################################################
# Hierarchical tree building functions 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:55,代碼來源:hierarchical.py

示例14: friedman_rafsky

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def friedman_rafsky(x, y):
    """
    Compute a dissimilarity metric based on the Friedman-Rafsky runs statistics.

    The algorithm builds a minimal spanning tree (the subset of edges
    connecting all points that minimizes the total edge length) then counts
    the edges linking points from the same distribution.

    Parameters
    ----------
    x : ndarray (n,d)
        Reference sample.
    y : ndarray (m,d)
        Candidate sample.

    Returns
    -------
    float
        Friedman-Rafsky dissimilarity metric ranging from 0 to (m+n-1)/(m+n).

    References
    ----------
    Friedman J.H. and Rafsky L.C. (1979) Multivariate generaliations of the
    Wald-Wolfowitz and Smirnov two-sample tests. Annals of Stat. Vol.7,
    No. 4, 697-717.
    """
    from sklearn import neighbors
    from scipy.sparse.csgraph import minimum_spanning_tree

    x, y = reshape_sample(x, y)
    nx, _ = x.shape
    ny, _ = y.shape
    n = nx + ny

    xy = np.vstack([x, y])

    # Compute the NNs and the minimum spanning tree
    g = neighbors.kneighbors_graph(xy, n_neighbors=n - 1, mode='distance')
    mst = minimum_spanning_tree(g, overwrite=True)
    edges = np.array(mst.nonzero()).T

    # Number of points whose neighbor is from the other sample
    diff = np.logical_xor(*(edges < nx).T).sum()

    return 1. - (1. + diff) / n 
開發者ID:bird-house,項目名稱:flyingpigeon,代碼行數:47,代碼來源:dissimilarity.py

示例15: _randomly_divide_connected_graph

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import minimum_spanning_tree [as 別名]
def _randomly_divide_connected_graph(adj, n_regions):
    """
    Divide the provided connected graph into `n_regions` regions.

    Parameters
    ----------
    adj : :class:`scipy.sparse.csr_matrix`
        Adjacency matrix.
    n_regions : int
        The desired number of clusters. Must be > 0 and <= number of nodes.

    Returns
    -------
    labels : :class:`numpy.ndarray`
        Each element (an integer in {0, ..., `n_regions` - 1}) specifies the
        region an area (defined by the index in the array) belongs to.

    Examples
    --------
    >>> from scipy.sparse import diags
    >>> n_nodes = 10
    >>> adj_diagonal = [1] * (n_nodes-1)
    >>> # 10x10 adjacency matrix representing the path 0-1-2-...-9-10
    >>> adj = diags([adj_diagonal, adj_diagonal], offsets=[-1, 1])
    >>> n_regions_desired = 4
    >>> labels = _randomly_divide_connected_graph(adj, n_regions_desired)
    >>> n_regions_obtained = len(set(labels))
    >>> n_regions_desired == n_regions_obtained
    True
    """
    if not n_regions > 0:
        msg = "n_regions is {} but must be positive.".format(n_regions)
        raise ValueError(msg)
    n_areas = adj.shape[0]
    if not n_regions <= n_areas:
        msg = (
            "n_regions is {} but must less than or equal to "
            + "the number of nodes which is {}".format(n_regions, n_areas)
        )
        raise ValueError(msg)
    mst = csg.minimum_spanning_tree(adj)
    for _ in range(n_regions - 1):
        # try different links to cut and pick the one leading to the most
        # balanced solution
        best_link = None
        max_region_size = float("inf")
        for __ in range(5):
            mst_copy = mst.copy()
            nonzero_i, nonzero_j = mst_copy.nonzero()
            random_position = random.randrange(len(nonzero_i))
            i, j = nonzero_i[random_position], nonzero_j[random_position]
            mst_copy[i, j] = 0
            mst_copy.eliminate_zeros()
            labels = csg.connected_components(mst_copy, directed=False)[1]
            max_size = max(np.unique(labels, return_counts=True)[1])
            if max_size < max_region_size:
                best_link = (i, j)
                max_region_size = max_size
        mst[best_link[0], best_link[1]] = 0
        mst.eliminate_zeros()
    return csg.connected_components(mst)[1] 
開發者ID:pysal,項目名稱:region,代碼行數:63,代碼來源:util.py


注:本文中的scipy.sparse.csgraph.minimum_spanning_tree方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。