當前位置: 首頁>>代碼示例>>Python>>正文


Python csgraph.laplacian方法代碼示例

本文整理匯總了Python中scipy.sparse.csgraph.laplacian方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.laplacian方法的具體用法?Python csgraph.laplacian怎麽用?Python csgraph.laplacian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse.csgraph的用法示例。


在下文中一共展示了csgraph.laplacian方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _check_graph_laplacian

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def _check_graph_laplacian(mat, normed):
    if not hasattr(mat, 'shape'):
        mat = eval(mat, dict(np=np, sparse=sparse))

    if sparse.issparse(mat):
        sp_mat = mat
        mat = sp_mat.todense()
    else:
        sp_mat = sparse.csr_matrix(mat)

    laplacian = csgraph.laplacian(mat, normed=normed)
    n_nodes = mat.shape[0]
    if not normed:
        np.testing.assert_array_almost_equal(laplacian.sum(axis=0),
                                             np.zeros(n_nodes))
    np.testing.assert_array_almost_equal(laplacian.T,
                                         laplacian)
    np.testing.assert_array_almost_equal(
        laplacian,
        csgraph.laplacian(sp_mat, normed=normed).todense())

    np.testing.assert_array_almost_equal(
        laplacian,
        _explicit_laplacian(mat, normed=normed)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:26,代碼來源:test_graph_laplacian.py

示例2: test_spectral_embedding_unnormalized

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(sims,
                                     norm_laplacian=False,
                                     n_components=n_components,
                                     drop_first=False)

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph.laplacian(sims, normed=False,
                                      return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_spectral_embedding.py

示例3: _check_symmetric_graph_laplacian

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def _check_symmetric_graph_laplacian(mat, normed):
    if not hasattr(mat, 'shape'):
        mat = eval(mat, dict(np=np, sparse=sparse))

    if sparse.issparse(mat):
        sp_mat = mat
        mat = sp_mat.todense()
    else:
        sp_mat = sparse.csr_matrix(mat)

    laplacian = csgraph.laplacian(mat, normed=normed)
    n_nodes = mat.shape[0]
    if not normed:
        assert_array_almost_equal(laplacian.sum(axis=0), np.zeros(n_nodes))
    assert_array_almost_equal(laplacian.T, laplacian)
    assert_array_almost_equal(laplacian,
            csgraph.laplacian(sp_mat, normed=normed).todense())

    assert_array_almost_equal(laplacian,
            _explicit_laplacian(mat, normed=normed)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_graph_laplacian.py

示例4: test_arpack_eigsh_initialization

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def test_arpack_eigsh_initialization():
    # Non-regression test that shows null-space computation is better with
    # initialization of eigsh from [-1,1] instead of [0,1]
    random_state = check_random_state(42)

    A = random_state.rand(50, 50)
    A = np.dot(A.T, A)  # create s.p.d. matrix
    A = laplacian(A) + 1e-7 * np.identity(A.shape[0])
    k = 5

    # Test if eigsh is working correctly
    # New initialization [-1,1] (as in original ARPACK)
    # Was [0,1] before, with which this test could fail
    v0 = random_state.uniform(-1, 1, A.shape[0])
    w, _ = eigsh(A, k=k, sigma=0.0, v0=v0)

    # Eigenvalues of s.p.d. matrix should be nonnegative, w[0] is smallest
    assert_greater_equal(w[0], 0) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:20,代碼來源:test_utils.py

示例5: direct_compute_deepwalk_matrix

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def direct_compute_deepwalk_matrix(A, window, b):
    n = A.shape[0]
    vol = float(A.sum())
    L, d_rt = csgraph.laplacian(A, normed=True, return_diag=True)
    # X = D^{-1/2} A D^{-1/2}
    X = sparse.identity(n) - L
    S = np.zeros_like(X)
    X_power = sparse.identity(n)
    for i in range(window):
        logger.info("Compute matrix %d-th power", i+1)
        X_power = X_power.dot(X)
        S += X_power
    S *= vol / window / b
    D_rt_inv = sparse.diags(d_rt ** -1)
    M = D_rt_inv.dot(D_rt_inv.dot(S).T)
    m = T.matrix()
    f = theano.function([m], T.log(T.maximum(m, 1)))
    Y = f(M.todense().astype(theano.config.floatX))
    return sparse.csr_matrix(Y) 
開發者ID:xptree,項目名稱:NetMF,代碼行數:21,代碼來源:netmf.py

示例6: laplacian

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def laplacian(mx, norm):
    """Laplacian-normalize sparse matrix"""
    assert (all (len(row) == len(mx) for row in mx)), "Input should be a square matrix"

    return csgraph.laplacian(adj, normed = norm) 
開發者ID:meliketoy,項目名稱:graph-cnn.pytorch,代碼行數:7,代碼來源:utils.py

示例7: _build_graph

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def _build_graph(self):
        """Graph matrix for Label Spreading computes the graph laplacian"""
        # compute affinity matrix (or gram matrix)
        if self.kernel == 'knn':
            self.nn_fit = None
        n_samples = self.X_.shape[0]
        affinity_matrix = self._get_kernel(self.X_)
        laplacian = csgraph.laplacian(affinity_matrix, normed=True)
        laplacian = -laplacian
        if sparse.isspmatrix(laplacian):
            diag_mask = (laplacian.row == laplacian.col)
            laplacian.data[diag_mask] = 0.0
        else:
            laplacian.flat[::n_samples + 1] = 0.0  # set diag to 0.0
        return laplacian 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:17,代碼來源:label_propagation.py

示例8: test_laplacian_value_error

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def test_laplacian_value_error():
    for t in int, float, complex:
        for m in ([1, 1],
                  [[[1]]],
                  [[1, 2, 3], [4, 5, 6]],
                  [[1, 2], [3, 4], [5, 5]]):
            A = np.array(m, dtype=t)
            assert_raises(ValueError, csgraph.laplacian, A) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:test_graph_laplacian.py

示例9: _check_laplacian

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def _check_laplacian(A, desired_L, desired_d, normed, use_out_degree):
    for arr_type in np.array, sparse.csr_matrix, sparse.coo_matrix:
        for t in int, float, complex:
            adj = arr_type(A, dtype=t)
            L = csgraph.laplacian(adj, normed=normed, return_diag=False,
                                  use_out_degree=use_out_degree)
            _assert_allclose_sparse(L, desired_L, atol=1e-12)
            L, d = csgraph.laplacian(adj, normed=normed, return_diag=True,
                                  use_out_degree=use_out_degree)
            _assert_allclose_sparse(L, desired_L, atol=1e-12)
            _assert_allclose_sparse(d, desired_d, atol=1e-12) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:13,代碼來源:test_graph_laplacian.py

示例10: constructLaplacianMatrix

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def constructLaplacianMatrix(self, W, Gepsilon):
		G = W.copy()
		#Convert adjacency matrix of weighted graph to adjacency matrix of unweighted graph
		for i in self.users:
			for j in self.users:
				if G[i.id][j.id] > 0:
					G[i.id][j.id] = 1	

		L = csgraph.laplacian(G, normed = False)
		print L
		I = np.identity(n = G.shape[0])
		GW = I + Gepsilon*L  # W is a double stochastic matrix
		print 'GW', GW
		return GW.T 
開發者ID:huazhengwang,項目名稱:BanditLib,代碼行數:16,代碼來源:Simulation_save_file.py

示例11: approximate_normalized_graph_laplacian

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def approximate_normalized_graph_laplacian(A, rank, which="LA"):
    n = A.shape[0]
    L, d_rt = csgraph.laplacian(A, normed=True, return_diag=True)
    # X = D^{-1/2} W D^{-1/2}
    X = sparse.identity(n) - L
    logger.info("Eigen decomposition...")
    #evals, evecs = sparse.linalg.eigsh(X, rank,
    #        which=which, tol=1e-3, maxiter=300)
    evals, evecs = sparse.linalg.eigsh(X, rank, which=which)
    logger.info("Maximum eigenvalue %f, minimum eigenvalue %f", np.max(evals), np.min(evals))
    logger.info("Computing D^{-1/2}U..")
    D_rt_inv = sparse.diags(d_rt ** -1)
    D_rt_invU = D_rt_inv.dot(evecs)
    return evals, D_rt_invU 
開發者ID:xptree,項目名稱:NetMF,代碼行數:16,代碼來源:netmf.py

示例12: _im_distance

# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import laplacian [as 別名]
def _im_distance(adj1, adj2, hwhm):
    """Computes the Ipsen-Mikhailov distance for two symmetric adjacency
    matrices

    Base on this paper :
    https://journals.aps.org/pre/abstract/10.1103/PhysRevE.66.046109

    Note : this is also used by the file hamming_ipsen_mikhailov.py

    Parameters
    ----------

    adj1, adj2 (array): adjacency matrices.

    hwhm (float) : hwhm of the lorentzian distribution.

    Returns
    -------

    dist (float) : Ipsen-Mikhailov distance.

    """
    N = len(adj1)
    # get laplacian matrix
    L1 = laplacian(adj1, normed=False)
    L2 = laplacian(adj2, normed=False)

    # get the modes for the positive-semidefinite laplacian
    w1 = np.sqrt(np.abs(eigh(L1)[0][1:]))
    w2 = np.sqrt(np.abs(eigh(L2)[0][1:]))

    # we calculate the norm for both spectrum
    norm1 = (N - 1) * np.pi / 2 - np.sum(np.arctan(-w1 / hwhm))
    norm2 = (N - 1) * np.pi / 2 - np.sum(np.arctan(-w2 / hwhm))

    # define both spectral densities
    density1 = lambda w: np.sum(hwhm / ((w - w1) ** 2 + hwhm ** 2)) / norm1
    density2 = lambda w: np.sum(hwhm / ((w - w2) ** 2 + hwhm ** 2)) / norm2

    func = lambda w: (density1(w) - density2(w)) ** 2

    return np.sqrt(quad(func, 0, np.inf, limit=100)[0]) 
開發者ID:netsiphd,項目名稱:netrd,代碼行數:44,代碼來源:ipsen_mikhailov.py


注:本文中的scipy.sparse.csgraph.laplacian方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。