本文整理匯總了Python中scipy.sparse.csgraph.connected_components方法的典型用法代碼示例。如果您正苦於以下問題:Python csgraph.connected_components方法的具體用法?Python csgraph.connected_components怎麽用?Python csgraph.connected_components使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.sparse.csgraph
的用法示例。
在下文中一共展示了csgraph.connected_components方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: computeObj
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def computeObj(U, pairs, _delta, gtlabels, numeval):
""" This is similar to computeObj function in Matlab """
numsamples = len(U)
diff = np.linalg.norm(U[pairs[:, 0].astype(int)] - U[pairs[:, 1].astype(int)], axis=1)**2
# computing clustering measures
index1 = np.sqrt(diff) < _delta
index = np.where(index1)
adjacency = csr_matrix((np.ones(len(index[0])), (pairs[index[0], 0].astype(int), pairs[index[0], 1].astype(int))),
shape=(numsamples, numsamples))
adjacency = adjacency + adjacency.transpose()
n_components, labels = connected_components(adjacency, directed=False)
index2 = labels[pairs[:, 0].astype(int)] == labels[pairs[:, 1].astype(int)]
ari, ami, nmi, acc = benchmarking(gtlabels[:numeval], labels[:numeval])
return index2, ari, ami, nmi, acc, n_components, labels
示例2: compute_assignment
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def compute_assignment(self, epsilon):
"""
Assigns points to clusters based on their representative. Two points are part of the same cluster if their
representative are close enough (their squared euclidean distance is < delta)
"""
diff = np.sum((self.U[self.i, :] - self.U[self.j, :])**2, axis=1)
# computing connected components.
is_conn = np.sqrt(diff) <= self.clustering_threshold*epsilon
G = scipy.sparse.coo_matrix((np.ones((2*np.sum(is_conn),)),
(np.concatenate([self.i[is_conn], self.j[is_conn]], axis=0),
np.concatenate([self.j[is_conn], self.i[is_conn]], axis=0))),
shape=[self.n_samples, self.n_samples])
num_components, labels = connected_components(G, directed=False)
return labels, num_components
示例3: _graph_is_connected
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def _graph_is_connected(graph):
""" Return whether the graph is connected (True) or Not (False)
Parameters
----------
graph : array-like or sparse matrix, shape: (n_samples, n_samples)
adjacency matrix of the graph, non-zero weight means an edge
between the nodes
Returns
-------
is_connected : bool
True means the graph is fully connected and False means not
"""
if sparse.isspmatrix(graph):
# sparse graph, find all the connected components
n_connected_components, _ = connected_components(graph)
return n_connected_components == 1
else:
# dense graph, find all connected components start from node 0
return _graph_connected_component(graph, 0).sum() == graph.shape[0]
示例4: rt_grouping
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def rt_grouping(mzregions):
"""
A function that groups roi inside mzregions.
:param mzregions: a list of mzRegion objects
:return: a list of defaultdicts, where the key is the name of file and value is a list of ROIs
"""
components = []
for region in mzregions:
region = np.array([(name, roi) for name, s in region.rois.items() for roi in s])
n = len(region)
graph = np.zeros((n, n), dtype=np.uint8)
for i in range(n - 1):
for j in range(i + 1, n):
graph[i, j] = roi_intersected(region[i][1], region[j][1])
n_components, labels = connected_components(graph, directed=False)
for k in range(n_components):
rois = region[labels == k]
component = defaultdict(list)
for roi in rois:
component[roi[0]].append(roi[1])
components.append(component)
return components
示例5: check_mesh
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def check_mesh(verts, tris, filename=None):
ij = np.r_[np.c_[tris[:,0], tris[:,1]],
np.c_[tris[:,0], tris[:,2]],
np.c_[tris[:,1], tris[:,2]]]
G = sparse.csr_matrix((np.ones(len(ij)), ij.T), shape=(verts.shape[0], verts.shape[0]))
n_components, labels = csgraph.connected_components(G, directed=False)
if n_components > 1:
size_components = np.bincount(labels)
if len(size_components) > 1:
raise ValueError, "found %d connected components in the mesh (%s)" % (n_components, filename)
keep_vert = labels == size_components.argmax()
else:
keep_vert = np.ones(verts.shape[0], np.bool)
verts = verts[keep_vert, :]
tris = filter_reindex(keep_vert, tris[keep_vert[tris].all(axis=1)])
return verts, tris
示例6: _compute_cp_labels
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def _compute_cp_labels(core_points, *in_cp_neighs):
core_ids = np.cumsum(core_points) - 1
n_core_pts = np.count_nonzero(core_points)
adj_matrix = lil_matrix((n_core_pts, n_core_pts))
# Build adjacency matrix of core points
in_cp_neighs_iter = chain(*in_cp_neighs)
core_idx = 0
for idx, neighbours in zip(core_points.nonzero()[0], in_cp_neighs_iter):
neighbours = core_ids[neighbours[core_points[neighbours]]]
adj_matrix.rows[core_idx] = neighbours
adj_matrix.data[core_idx] = [1] * len(neighbours)
core_idx += 1
n_clusters, core_labels = connected_components(adj_matrix, directed=False)
labels = np.full(core_points.shape, -1)
labels[core_points] = core_labels
return labels
示例7: largest_connected_components
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def largest_connected_components(adj, n_components=1):
"""Select the largest connected components in the graph.
Parameters
----------
adj : gust.SparseGraph
Input graph.
n_components : int, default 1
Number of largest connected components to keep.
Returns
-------
sparse_graph : gust.SparseGraph
Subgraph of the input graph where only the nodes in largest n_components are kept.
"""
_, component_indices = connected_components(adj)
component_sizes = np.bincount(component_indices)
components_to_keep = np.argsort(component_sizes)[::-1][:n_components] # reverse order to sort descending
nodes_to_keep = [
idx for (idx, component) in enumerate(component_indices) if component in components_to_keep
]
print("Selecting {0} largest connected components".format(n_components))
return nodes_to_keep
示例8: make_cut
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def make_cut(self, in_node, out_node, score, MSF=None):
"""
make a cut on the MSF inplace, provided the in_node, out_node, MSF, and score.
in_node: int, ID of the source node for the edge to be cut
out_node: int, ID of the destination node for the edge to be cut
score: float, the value of the score being cut. if the score is infinite, the cut is not made.
MSF: the spanning forest to use when making the cut. If not provided,
uses the defualt tree in self.minimum_spanning_forest_
"""
if MSF is None:
MSF = self.minimum_spanning_forest_
if np.isfinite(score):
MSF[in_node, out_node] = 0
MSF.eliminate_zeros()
return (MSF, *cg.connected_components(MSF, directed=False))
raise OptimizeWarning('Score of the ({},{}) cut is inf, the quorum is likely not met!')
示例9: __init__
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def __init__(self, arg_dict):
BaseAlg.__init__(self, arg_dict)
self.time = 0
#N_LinUCBAlgorithm.__init__(dimension = dimension, alpha=alpha,lambda_ = lambda_,n=n)
self.users = []
#algorithm have n users, each user has a user structure
for i in range(self.n):
self.users.append(CLUBUserStruct(self.dimension,self.lambda_, i))
if (self.cluster_init=="Erdos-Renyi"):
p = 3*math.log(self.n)/self.n
self.Graph = np.random.choice([0, 1], size=(self.n,self.n), p=[1-p, p])
self.clusters = []
g = csr_matrix(self.Graph)
N_components, components = connected_components(g)
else:
self.Graph = np.ones([self.n,self.n])
self.clusters = []
g = csr_matrix(self.Graph)
N_components, components = connected_components(g)
示例10: updateGraphClusters
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def updateGraphClusters(self,userID, binaryRatio):
n = len(self.users)
for j in range(n):
ratio = float(np.linalg.norm(self.users[userID].UserTheta - self.users[j].UserTheta,2))/float(self.users[userID].CBPrime + self.users[j].CBPrime)
#print float(np.linalg.norm(self.users[userID].UserTheta - self.users[j].UserTheta,2)),'R', ratio
if ratio > 1:
ratio = 0
elif binaryRatio == 'True':
ratio = 1
elif binaryRatio == 'False':
ratio = 1.0/math.exp(ratio)
#print 'ratio',ratio
self.Graph[userID][j] = ratio
self.Graph[j][userID] = self.Graph[userID][j]
N_components, component_list = connected_components(csr_matrix(self.Graph))
#print 'N_components:',N_components
self.clusters = component_list
return N_components
示例11: largest_connected_components
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def largest_connected_components(adj, n_components=1):
"""Select the largest connected components in the graph.
Parameters
----------
sparse_graph : gust.SparseGraph
Input graph.
n_components : int, default 1
Number of largest connected components to keep.
Returns
-------
sparse_graph : gust.SparseGraph
Subgraph of the input graph where only the nodes in largest n_components are kept.
"""
_, component_indices = connected_components(adj)
component_sizes = np.bincount(component_indices)
components_to_keep = np.argsort(component_sizes)[::-1][:n_components] # reverse order to sort descending
nodes_to_keep = [
idx for (idx, component) in enumerate(component_indices) if component in components_to_keep
]
print("Selecting {0} largest connected components".format(n_components))
return nodes_to_keep
示例12: retrieve_weakly_connected_components
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def retrieve_weakly_connected_components(cgpms):
v_to_c = retrieve_variable_to_cgpm(cgpms)
adjacency = retrieve_adjacency_matrix(cgpms, v_to_c)
n_components, labels = connected_components(
adjacency, directed=True, connection='weak', return_labels=True)
return labels
示例13: test_weak_connections
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def test_weak_connections():
Xde = np.array([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
Xsp = csgraph.csgraph_from_dense(Xde, null_value=0)
for X in Xsp, Xde:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='weak')
assert_equal(n_components, 2)
assert_array_almost_equal(labels, [0, 0, 1])
示例14: test_strong_connections
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def test_strong_connections():
X1de = np.array([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
X2de = X1de + X1de.T
X1sp = csgraph.csgraph_from_dense(X1de, null_value=0)
X2sp = csgraph.csgraph_from_dense(X2de, null_value=0)
for X in X1sp, X1de:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 3)
labels.sort()
assert_array_almost_equal(labels, [0, 1, 2])
for X in X2sp, X2de:
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 2)
labels.sort()
assert_array_almost_equal(labels, [0, 0, 1])
示例15: test_strong_connections2
# 需要導入模塊: from scipy.sparse import csgraph [as 別名]
# 或者: from scipy.sparse.csgraph import connected_components [as 別名]
def test_strong_connections2():
X = np.array([[0, 0, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0]])
n_components, labels =\
csgraph.connected_components(X, directed=True,
connection='strong')
assert_equal(n_components, 5)
labels.sort()
assert_array_almost_equal(labels, [0, 1, 2, 2, 3, 4])