當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse.csc_matrix方法代碼示例

本文整理匯總了Python中scipy.sparse.csc_matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.csc_matrix方法的具體用法?Python sparse.csc_matrix怎麽用?Python sparse.csc_matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.csc_matrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def fit(self, X, y=None):
        mean = y.mean()
        lower = mean - self.margin
        upper = mean + self.margin
        ys = sparse.csc_matrix(y[:, np.newaxis])
        if self.weighted:
            x = X.multiply(ys).sum(axis=0)
            x = x / X.sum(axis=0)
        else:
            x = (X > 0)
            s = x.sum(axis=0)
            x = x.multiply(ys).sum(axis=0) / s
        x = np.array(x).flatten().astype('f4')
        mask1 = (x < lower)
        mask2 = (x > upper)
        self.mask = (mask1 + mask2).astype(bool)
        return self 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:19,代碼來源:feature_selection.py

示例2: load_matlab_file

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def load_matlab_file(path_file, name_field):
    """
    load '.mat' files
    inputs:
        path_file, string containing the file path
        name_field, string containig the field name (default='shape')
    warning:
        '.mat' files should be saved in the '-v7.3' format
    """
    db = h5py.File(path_file, 'r')
    ds = db[name_field]
    try:
        if 'ir' in ds.keys():
            data = np.asarray(ds['data'])
            ir = np.asarray(ds['ir'])
            jc = np.asarray(ds['jc'])
            out = sp.csc_matrix((data, ir, jc)).astype(np.float32)
    except AttributeError:
        # Transpose in case is a dense matrix because of the row- vs column- major ordering between python and matlab
        out = np.asarray(ds).astype(np.float32).T

    db.close()

    return out 
開發者ID:muhanzhang,項目名稱:IGMC,代碼行數:26,代碼來源:preprocessing.py

示例3: prepare_solver

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def prepare_solver(self):
        '''Prepares the object to solve FEM systems
        Note
        -------
        After running this method, do NOT change any attributes of the class!
        '''
        logger.info(f'Using solver options: {self._solver_options}')
        A = sparse.csc_matrix(self.A, copy=True)
        A.sort_indices()
        dof_map = copy.deepcopy(self.dof_map)
        if self.dirichlet is not None:
            A, dof_map = self.dirichlet.apply_to_matrix(A, dof_map)

        if self._solver_options == 'pardiso':
            self._solver = pardiso.Solver(A)
        else:
            self._A_reduced = A  # We need to save this as PETSc does not copy the vectors
            self._solver = petsc_solver.Solver(self._solver_options, A) 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:20,代碼來源:fem.py

示例4: create_matrix

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def create_matrix(dim, alpha=0.95, smallest_coef=0.1, largest_coef=.9):
    ''' Based o scikit-learn make_sparse_spd_matrix'''
    chol = -np.eye(dim)
    aux = np.random.rand(dim, dim)
    aux[aux < alpha] = 0
    aux[aux > alpha] = (smallest_coef
                        + (largest_coef - smallest_coef)
                        * np.random.rand(np.sum(aux > alpha)))
    aux = np.tril(aux, k=-1)

    # Permute the lines: we don't want to have asymmetries in the final
    # SPD matrix
    permutation = np.random.permutation(dim)
    aux = aux[permutation].T[permutation]
    chol += aux
    A = sp.csc_matrix(np.dot(chol.T, chol))

    x = np.random.rand(dim)
    b = A.dot(x)

    return A,b,x 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:23,代碼來源:test_pardiso.py

示例5: _read_hb_data

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def _read_hb_data(content, header):
    # XXX: look at a way to reduce memory here (big string creation)
    ptr_string = "".join([content.read(header.pointer_nbytes_full),
                           content.readline()])
    ptr = np.fromstring(ptr_string,
            dtype=int, sep=' ')

    ind_string = "".join([content.read(header.indices_nbytes_full),
                       content.readline()])
    ind = np.fromstring(ind_string,
            dtype=int, sep=' ')

    val_string = "".join([content.read(header.values_nbytes_full),
                          content.readline()])
    val = np.fromstring(val_string,
            dtype=header.values_dtype, sep=' ')

    try:
        return csc_matrix((val, ind-1, ptr-1),
                          shape=(header.nrows, header.ncols))
    except ValueError as e:
        raise e 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:hb.py

示例6: adult_dataload

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def adult_dataload():
    from scipy.sparse import csc_matrix
    import scipy.io as sio
    import numpy as np
    filepath='D:/PostDocWork/LSML/RandomFourierFeatures/Datasets/adult/adult/adult123.mat'
    adult=sio.loadmat(filepath)
    Dummy=adult['XTrain']
    TrainData=csc_matrix(Dummy,shape=Dummy.shape).toarray()
    TrainData=TrainData.T
    train_label=np.squeeze(adult['yTrain'])
    Dummy1=adult['XTest']
    TestData = csc_matrix(Dummy1,shape=Dummy1.shape).toarray()
    TestData=TestData.T
    test_label = np.squeeze(adult['yTest'])
    del Dummy, Dummy1
    return TrainData, train_label, TestData, test_label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:18,代碼來源:DatasetLoad.py

示例7: ijcnn1_dataload

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def ijcnn1_dataload():
    from scipy.sparse import csc_matrix
    import scipy.io as sio
    import numpy as np
    filepath='D:\PostDocWork\LSML\RandomFourierFeatures\Datasets\ijcnn1\ijcnn1_combined.mat'
    adult=sio.loadmat(filepath)
    Dummy=adult['Xtrain']
    TrainData=csc_matrix(Dummy,shape=Dummy.shape).toarray()
    train_label=np.squeeze(adult['ytrain'])
    Dummy1=adult['Xtest']
    TestData = csc_matrix(Dummy1,shape=Dummy1.shape).toarray()
    test_label = np.squeeze(adult['ytest'])
    Dummy2=adult['Xval']
    ValData = csc_matrix(Dummy2,shape=Dummy2.shape).toarray()
    val_label = np.squeeze(adult['yval'])
    return TrainData, train_label, TestData, test_label, ValData, val_label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:18,代碼來源:DatasetLoad.py

示例8: census_dataload

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def census_dataload():
    from scipy.sparse import csc_matrix
    import scipy.io as sio
    import numpy as np
    filepath='D:/PostDocWork/LSML/RandomFourierFeatures/Datasets/census/census/census.mat'
    adult=sio.loadmat(filepath)
    Dummy=adult['Xtrain']
    TrainData=csc_matrix(Dummy,shape=Dummy.shape).toarray()
    TrainData=TrainData.T
    train_label=np.squeeze(adult['ytrain'])
    Dummy1=adult['Xtest']
    TestData = csc_matrix(Dummy1,shape=Dummy1.shape).toarray()
    TestData=TestData.T
    test_label = np.squeeze(adult['ytest'])
    del Dummy, Dummy1
    return TrainData, train_label, TestData, test_label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:18,代碼來源:DatasetLoad.py

示例9: cpu_dataload

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def cpu_dataload():
    from scipy.sparse import csc_matrix
    import scipy.io as sio
    import numpy as np
    filepath='D:/PostDocWork/LSML/RandomFourierFeatures/Datasets/cpu/cpu/cpu.mat'
    adult=sio.loadmat(filepath)
    Dummy=adult['Xtrain']
    TrainData=csc_matrix(Dummy,shape=Dummy.shape).toarray()
    TrainData=TrainData.T
    train_label=np.squeeze(adult['ytrain'])
    Dummy1=adult['Xtest']
    TestData = csc_matrix(Dummy1,shape=Dummy1.shape).toarray()
    TestData=TestData.T
    test_label = np.squeeze(adult['ytest'])
    del Dummy, Dummy1
    return TrainData, train_label, TestData, test_label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:18,代碼來源:DatasetLoad.py

示例10: test_local_csm_properties_csm

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_local_csm_properties_csm():
    data = tensor.vector()
    indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
                              tensor.ivector())
    mode = theano.compile.mode.get_default_mode()
    mode = mode.including("specialize", "local_csm_properties_csm")
    for CS, cast in [(sparse.CSC, sp.csc_matrix),
                     (sparse.CSR, sp.csr_matrix)]:
        f = theano.function([data, indices, indptr, shape],
                            sparse.csm_properties(
                                CS(data, indices, indptr, shape)),
                            mode=mode)
        assert not any(
            isinstance(node.op, (sparse.CSM, sparse.CSMProperties))
            for node in f.maker.fgraph.toposort())
        v = cast(random_lil((10, 40),
                            config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:20,代碼來源:test_opt.py

示例11: test_local_csm_grad_c

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_local_csm_grad_c():
    raise SkipTest("Opt disabled as it don't support unsorted indices")
    if not theano.config.cxx:
        raise SkipTest("G++ not available, so we need to skip this test.")
    data = tensor.vector()
    indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
                              tensor.ivector())
    mode = theano.compile.mode.get_default_mode()

    if theano.config.mode == 'FAST_COMPILE':
        mode = theano.compile.Mode(linker='c|py', optimizer='fast_compile')

    mode = mode.including("specialize", "local_csm_grad_c")
    for CS, cast in [(sparse.CSC, sp.csc_matrix), (sparse.CSR, sp.csr_matrix)]:
        cost = tensor.sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
        f = theano.function(
            [data, indices, indptr, shape],
            tensor.grad(cost, data),
            mode=mode)
        assert not any(isinstance(node.op, sparse.CSMGrad) for node
                       in f.maker.fgraph.toposort())
        v = cast(random_lil((10, 40),
                            config.floatX, 3))
        f(v.data, v.indices, v.indptr, v.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_opt.py

示例12: test_equality_case

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_equality_case(self):
        """
        Test assuring normal behaviour when values
        in the matrices are equal
        """

        scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]

        if (bool(scipy_ver < [0, 13])):
            raise SkipTest("comparison operators need newer release of scipy")

        x = sparse.csc_matrix()
        y = theano.tensor.matrix()

        m1 = sp.csc_matrix((2, 2), dtype=theano.config.floatX)
        m2 = numpy.asarray([[0, 0], [0, 0]], dtype=theano.config.floatX)

        for func in self.testsDic:

            op = func(y, x)
            f = theano.function([y, x], op)

            self.assertTrue(numpy.array_equal(f(m2, m1),
                                              self.testsDic[func](m2, m1))) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:test_basic.py

示例13: test_csm_properties_grad

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_csm_properties_grad(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csc', 'csr']:
            for dtype in ['float32', 'float64']:
                spmat = sp_types[format](random_lil((4, 3), dtype, 3))

                verify_grad_sparse(lambda *x: CSMProperties()(*x)[0], [spmat],
                                   structured=True)

                verify_grad_sparse(lambda *x: CSMProperties()(*x)[1], [spmat],
                                   structured=True)

                verify_grad_sparse(lambda *x: CSMProperties()(*x)[2], [spmat],
                                   structured=True)

                verify_grad_sparse(lambda *x: CSMProperties()(*x)[2], [spmat],
                                   structured=True) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_basic.py

示例14: test_csm_unsorted

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_csm_unsorted(self):
        """
        Test support for gradients of unsorted inputs.
        """
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csr', 'csc', ]:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                # Sparse advanced indexing produces unsorted sparse matrices
                a = sparse_random_inputs(format, (4, 3), out_dtype=dtype,
                                         unsorted_indices=True)[1][0]
                # Make sure it's unsorted
                assert not a.has_sorted_indices
                def my_op(x):
                    y = tensor.constant(a.indices)
                    z = tensor.constant(a.indptr)
                    s = tensor.constant(a.shape)
                    return tensor.sum(
                        dense_from_sparse(CSM(format)(x, y, z, s) * a))
                verify_grad_sparse(my_op, [a.data]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_basic.py

示例15: test_csm

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import csc_matrix [as 別名]
def test_csm(self):
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csc', 'csr']:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                f = theano.function([x, y, z, s], CSM(format)(x, y, z, s))

                spmat = sp_types[format](random_lil((4, 3), dtype, 3))

                res = f(spmat.data, spmat.indices, spmat.indptr,
                        numpy.asarray(spmat.shape, 'int32'))

                assert numpy.all(res.data == spmat.data)
                assert numpy.all(res.indices == spmat.indices)
                assert numpy.all(res.indptr == spmat.indptr)
                assert numpy.all(res.shape == spmat.shape) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_basic.py


注:本文中的scipy.sparse.csc_matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。