當前位置: 首頁>>代碼示例>>Python>>正文


Python sparse.SparseEfficiencyWarning方法代碼示例

本文整理匯總了Python中scipy.sparse.SparseEfficiencyWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python sparse.SparseEfficiencyWarning方法的具體用法?Python sparse.SparseEfficiencyWarning怎麽用?Python sparse.SparseEfficiencyWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.sparse的用法示例。


在下文中一共展示了sparse.SparseEfficiencyWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_example_comparison

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_example_comparison(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            row = array([0,0,1,2,2,2])
            col = array([0,2,2,0,1,2])
            data = array([1,2,3,-4,5,6])
            sM = csr_matrix((data,(row,col)), shape=(3,3), dtype=float)
            M = sM.todense()

            row = array([0,0,1,1,0,0])
            col = array([0,2,1,1,0,0])
            data = array([1,1,1,1,1,1])
            sN = csr_matrix((data, (row,col)), shape=(3,3), dtype=float)
            N = sN.todense()

            sX = spsolve(sM, sN)
            X = scipy.linalg.solve(M, N)

            assert_array_almost_equal(X, sX.todense()) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:21,代碼來源:test_linsolve.py

示例2: test_sparse_expm_multiply_interval

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_sparse_expm_multiply_interval(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            np.random.seed(1234)
            start = 0.1
            stop = 3.2
            n = 40
            k = 3
            endpoint = True
            for num in (14, 13, 2):
                A = scipy.sparse.rand(n, n, density=0.05)
                B = np.random.randn(n, k)
                v = np.random.randn(n)
                for target in (B, v):
                    X = expm_multiply(A, target,
                            start=start, stop=stop, num=num, endpoint=endpoint)
                    samples = np.linspace(start=start, stop=stop,
                            num=num, endpoint=endpoint)
                    for solution, t in zip(X, samples):
                        assert_allclose(solution,
                                scipy.linalg.expm(t*A).dot(target)) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:23,代碼來源:test_expm_multiply.py

示例3: test_sparse_expm_multiply

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_sparse_expm_multiply(self):
        np.random.seed(1234)
        n = 40
        k = 3
        nsamples = 10
        for i in range(nsamples):
            A = scipy.sparse.rand(n, n, density=0.05)
            B = np.random.randn(n, k)
            observed = expm_multiply(A, B)
            with suppress_warnings() as sup:
                sup.filter(SparseEfficiencyWarning,
                           "splu requires CSC matrix format")
                sup.filter(SparseEfficiencyWarning,
                           "spsolve is more efficient when sparse b is in the CSC matrix format")
                expected = scipy.linalg.expm(A).dot(B)
            assert_allclose(observed, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_expm_multiply.py

示例4: test_sparse_expm_multiply_interval

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_sparse_expm_multiply_interval(self):
        np.random.seed(1234)
        start = 0.1
        stop = 3.2
        n = 40
        k = 3
        endpoint = True
        for num in (14, 13, 2):
            A = scipy.sparse.rand(n, n, density=0.05)
            B = np.random.randn(n, k)
            v = np.random.randn(n)
            for target in (B, v):
                X = expm_multiply(A, target,
                        start=start, stop=stop, num=num, endpoint=endpoint)
                samples = np.linspace(start=start, stop=stop,
                        num=num, endpoint=endpoint)
                with suppress_warnings() as sup:
                    sup.filter(SparseEfficiencyWarning,
                               "splu requires CSC matrix format")
                    sup.filter(SparseEfficiencyWarning,
                               "spsolve is more efficient when sparse b is in the CSC matrix format")
                    for solution, t in zip(X, samples):
                        assert_allclose(solution,
                                scipy.linalg.expm(t*A).dot(target)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:26,代碼來源:test_expm_multiply.py

示例5: test_non_square

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_non_square(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            # A is not square.
            A = ones((3, 4))
            b = ones((4, 1))
            assert_raises(ValueError, spsolve, A, b)
            # A2 and b2 have incompatible shapes.
            A2 = csc_matrix(eye(3))
            b2 = array([1.0, 2.0])
            assert_raises(ValueError, spsolve, A2, b2) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_linsolve.py

示例6: test_splu_smoketest

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_splu_smoketest(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            # Check that splu works at all
            x = random.rand(self.n)
            lu = splu(self.A)
            r = self.A*lu.solve(x)
            assert_(abs(x - r).max() < 1e-13) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:10,代碼來源:test_linsolve.py

示例7: test_spilu_smoketest

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_spilu_smoketest(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            # Check that spilu works at all
            x = random.rand(self.n)
            lu = spilu(self.A, drop_tol=1e-2, fill_factor=5)
            r = self.A*lu.solve(x)
            assert_(abs(x - r).max() < 1e-2)
            assert_(abs(x - r).max() > 1e-5) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_linsolve.py

示例8: test_leftright_precond

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_leftright_precond(self):
        """Check that QMR works with left and right preconditioners"""

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            from scipy.sparse.linalg.dsolve import splu
            from scipy.sparse.linalg.interface import LinearOperator

            n = 100

            dat = ones(n)
            A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n)
            b = arange(n,dtype='d')

            L = spdiags([-dat/2, dat], [-1,0], n, n)
            U = spdiags([4*dat, -dat], [0,1], n, n)

            L_solver = splu(L)
            U_solver = splu(U)

            def L_solve(b):
                return L_solver.solve(b)

            def U_solve(b):
                return U_solver.solve(b)

            def LT_solve(b):
                return L_solver.solve(b,'T')

            def UT_solve(b):
                return U_solver.solve(b,'T')

            M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve)
            M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve)

            x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2)

            assert_equal(info,0)
            assert_normclose(A*x, b, tol=1e-8) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:41,代碼來源:test_iterative.py

示例9: test_padecases_dtype_sparse_complex

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_padecases_dtype_sparse_complex(self):
        # float32 and complex64 lead to errors in spsolve/UMFpack
        dtype = np.complex128
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
                a = scale * speye(3, 3, dtype=dtype, format='csc')
                e = exp(scale) * eye(3, dtype=dtype)
                assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:11,代碼來源:test_matfuncs.py

示例10: test_sparse_expm_multiply

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_sparse_expm_multiply(self):
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", category=SparseEfficiencyWarning)
            np.random.seed(1234)
            n = 40
            k = 3
            nsamples = 10
            for i in range(nsamples):
                A = scipy.sparse.rand(n, n, density=0.05)
                B = np.random.randn(n, k)
                observed = expm_multiply(A, B)
                expected = scipy.linalg.expm(A).dot(B)
                assert_allclose(observed, expected) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_expm_multiply.py

示例11: test_randomized_svd_sparse_warnings

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_randomized_svd_sparse_warnings():
    # randomized_svd throws a warning for lil and dok matrix
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng)
    n_components = 5
    for cls in (sparse.lil_matrix, sparse.dok_matrix):
        X = cls(X)
        assert_warns_message(
            sparse.SparseEfficiencyWarning,
            "Calculating SVD of a {} is expensive. "
            "csr_matrix is more efficient.".format(cls.__name__),
            randomized_svd, X, n_components, n_iter=1,
            power_iteration_normalizer='none') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_extmath.py

示例12: test_leftright_precond

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_leftright_precond(self):
        """Check that QMR works with left and right preconditioners"""

        from scipy.sparse.linalg.dsolve import splu
        from scipy.sparse.linalg.interface import LinearOperator

        n = 100

        dat = ones(n)
        A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n)
        b = arange(n,dtype='d')

        L = spdiags([-dat/2, dat], [-1,0], n, n)
        U = spdiags([4*dat, -dat], [0,1], n, n)

        with suppress_warnings() as sup:
            sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format")
            L_solver = splu(L)
            U_solver = splu(U)

        def L_solve(b):
            return L_solver.solve(b)

        def U_solve(b):
            return U_solver.solve(b)

        def LT_solve(b):
            return L_solver.solve(b,'T')

        def UT_solve(b):
            return U_solver.solve(b,'T')

        M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve)
        M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve)

        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2)

        assert_equal(info,0)
        assert_normclose(A*x, b, tol=1e-8) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:43,代碼來源:test_iterative.py

示例13: test_padecases_dtype_sparse_float

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_padecases_dtype_sparse_float(self):
        # float32 and complex64 lead to errors in spsolve/UMFpack
        dtype = np.float64
        for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
            a = scale * speye(3, 3, dtype=dtype, format='csc')
            e = exp(scale) * eye(3, dtype=dtype)
            with suppress_warnings() as sup:
                sup.filter(SparseEfficiencyWarning,
                           "Changing the sparsity structure of a csc_matrix is expensive.")
                exact_onenorm = _expm(a, use_exact_onenorm=True).toarray()
                inexact_onenorm = _expm(a, use_exact_onenorm=False).toarray()
            assert_array_almost_equal_nulp(exact_onenorm, e, nulp=100)
            assert_array_almost_equal_nulp(inexact_onenorm, e, nulp=100) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:15,代碼來源:test_matfuncs.py

示例14: test_padecases_dtype_sparse_complex

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_padecases_dtype_sparse_complex(self):
        # float32 and complex64 lead to errors in spsolve/UMFpack
        dtype = np.complex128
        for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
            a = scale * speye(3, 3, dtype=dtype, format='csc')
            e = exp(scale) * eye(3, dtype=dtype)
            with suppress_warnings() as sup:
                sup.filter(SparseEfficiencyWarning,
                           "Changing the sparsity structure of a csc_matrix is expensive.")
                assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:12,代碼來源:test_matfuncs.py

示例15: test_diagonalize_interslice_kernels

# 需要導入模塊: from scipy import sparse [as 別名]
# 或者: from scipy.sparse import SparseEfficiencyWarning [as 別名]
def test_diagonalize_interslice_kernels():
    n = 15
    m = 8
    kernels = [np.arange(n**2).reshape(n,n) + i*n**2 for i in range(m)]
    
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=sparse.SparseEfficiencyWarning)
        K = m_phate.kernel._diagonalize_interslice_kernels(kernels, method='csr')
    D = m_phate.kernel._diagonalize_interslice_kernels(kernels, method='dia')
    assert (D.tocsr() - K).nnz == 0 
開發者ID:scottgigante,項目名稱:m-phate,代碼行數:12,代碼來源:test_m_phate.py


注:本文中的scipy.sparse.SparseEfficiencyWarning方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。