本文整理匯總了Python中scipy.signal.welch方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.welch方法的具體用法?Python signal.welch怎麽用?Python signal.welch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.welch方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: rmsmap
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def rmsmap(fbin):
"""
Computes RMS map in time domain and spectra for each channel of Neuropixel probe
:param fbin: binary file in spike glx format (will look for attached metatdata)
:type fbin: str or pathlib.Path
:return: a dictionary with amplitudes in channeltime space, channelfrequency space, time
and frequency scales
"""
if not isinstance(fbin, spikeglx.Reader):
sglx = spikeglx.Reader(fbin)
rms_win_length_samples = 2 ** np.ceil(np.log2(sglx.fs * RMS_WIN_LENGTH_SECS))
# the window generator will generates window indices
wingen = dsp.WindowGenerator(ns=sglx.ns, nswin=rms_win_length_samples, overlap=0)
# pre-allocate output dictionary of numpy arrays
win = {'TRMS': np.zeros((wingen.nwin, sglx.nc)),
'nsamples': np.zeros((wingen.nwin,)),
'fscale': dsp.fscale(WELCH_WIN_LENGTH_SAMPLES, 1 / sglx.fs, one_sided=True),
'tscale': wingen.tscale(fs=sglx.fs)}
win['spectral_density'] = np.zeros((len(win['fscale']), sglx.nc))
# loop through the whole session
for first, last in wingen.firstlast:
D = sglx.read_samples(first_sample=first, last_sample=last)[0].transpose()
# remove low frequency noise below 1 Hz
D = dsp.hp(D, 1 / sglx.fs, [0, 1])
iw = wingen.iw
win['TRMS'][iw, :] = dsp.rms(D)
win['nsamples'][iw] = D.shape[1]
# the last window may be smaller than what is needed for welch
if last - first < WELCH_WIN_LENGTH_SAMPLES:
continue
# compute a smoothed spectrum using welch method
_, w = signal.welch(D, fs=sglx.fs, window='hanning', nperseg=WELCH_WIN_LENGTH_SAMPLES,
detrend='constant', return_onesided=True, scaling='density', axis=-1)
win['spectral_density'] += w.T
# print at least every 20 windows
if (iw % min(20, max(int(np.floor(wingen.nwin / 75)), 1))) == 0:
print_progress(iw, wingen.nwin)
return win
示例2: check_signal_power_signal1_below_signal2
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def check_signal_power_signal1_below_signal2(signals1, signals2, freq_range, fs):
'''
Check that spectrum power of signal1 is below the one of signal 2 in the range freq_range
'''
f1, pow1 = ss.welch(signals1, fs, nfft=1024)
f2, pow2 = ss.welch(signals2, fs, nfft=1024)
below = True
for (p1, p2) in zip(pow1, pow2):
r1_idxs = np.where((f1 > freq_range[0]) & (f1 <= freq_range[1]))
r2_idxs = np.where((f2 > freq_range[0]) & (f2 <= freq_range[1]))
sump1 = np.sum(p1[r1_idxs])
sump2 = np.sum(p2[r2_idxs])
if sump1 >= sump2:
below = False
break
return below
示例3: welchogram
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def welchogram(fs, wav, nswin=NS_WIN, overlap=OVERLAP, nperseg=NS_WELCH):
"""
Computes a spectrogram on a very large audio file.
:param fs: sampling frequency (Hz)
:param wav: wav signal (vector or memmap)
:param nswin: n samples of the sliding window
:param overlap: n samples of the overlap between windows
:param nperseg: n samples for the computation of the spectrogram
:return: tscale, fscale, downsampled_spectrogram
"""
ns = wav.shape[0]
window_generator = dsp.WindowGenerator(ns=ns, nswin=nswin, overlap=overlap)
nwin = window_generator.nwin
fscale = dsp.fscale(nperseg, 1 / fs, one_sided=True)
W = np.zeros((nwin, len(fscale)))
tscale = window_generator.tscale(fs=fs)
detect = []
for first, last in window_generator.firstlast:
# load the current window into memory
w = np.float64(wav[first:last]) * _get_conversion_factor()
# detection of ready tones
a = [d + first for d in _detect_ready_tone(w, fs)]
if len(a):
detect += a
# the last window may not allow a pwelch
if (last - first) < nperseg:
continue
# compute PSD estimate for the current window
iw = window_generator.iw
_, W[iw, :] = signal.welch(w, fs=fs, window='hanning', nperseg=nperseg, axis=-1,
detrend='constant', return_onesided=True, scaling='density')
if (iw % 50) == 0:
window_generator.print_progress()
window_generator.print_progress()
# the onset detection may have duplicates with sliding window, average them and remove
detect = np.sort(np.array(detect)) / fs
ind = np.where(np.diff(detect) < 0.1)[0]
detect[ind] = (detect[ind] + detect[ind + 1]) / 2
detect = np.delete(detect, ind + 1)
return tscale, fscale, W, detect
示例4: test_psd
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_psd():
n_channels, n_times = data.shape
_data = data[None, ...]
# Only test output shape when `method='welch'` or `method='multitaper'`
# since it is actually just a wrapper for MNE functions:
psd_welch, _ = power_spectrum(sfreq, _data, psd_method='welch')
psd_multitaper, _ = power_spectrum(sfreq, _data, psd_method='multitaper')
psd_fft, freqs_fft = power_spectrum(sfreq, _data, psd_method='fft')
assert_equal(psd_welch.shape, (1, n_channels, n_times // 2 + 1))
assert_equal(psd_multitaper.shape, (1, n_channels, n_times // 2 + 1))
assert_equal(psd_fft.shape, (1, n_channels, n_times // 2 + 1))
# Compare result obtained with `method='fft'` to the Scipy's result
# (implementation of Welch's method with rectangular window):
expected_freqs, expected_psd = signal.welch(data, sfreq,
window=signal.get_window(
'boxcar', data.shape[-1]),
return_onesided=True,
scaling='density')
assert_almost_equal(expected_freqs, freqs_fft)
assert_almost_equal(expected_psd, psd_fft[0, ...])
示例5: process
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def process(self):
self.update_counter += 1
if self.update_counter == self.update_rate:
self.update_counter = 0
else:
return
if self.welch_button.checkState():
f, C = welch(self.input.buffer, fs=250, nperseg=self.window_size, scaling='spectrum')
else:
C = np.fft.rfft(self.input.buffer[-self.window_size:] * self.window)
C = abs(C)
#C = C*C
C = C[self.lo_index: self.hi_index]
if self.logarithm:
C = np.log(C)
# Roll down one and replace leading edge with new data
self.waterfallImgArray = np.roll(self.waterfallImgArray, -1, axis=0)
self.waterfallImgArray[-1] = C
示例6: test_real_onesided_even
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_real_onesided_even(self):
x = np.zeros(16)
x[0] = 1
x[8] = 1
f, p = welch(x, nperseg=8)
assert_allclose(f, np.linspace(0, 0.5, 5))
assert_allclose(p, np.array([0.08333333, 0.15277778, 0.22222222,
0.22222222, 0.11111111]))
示例7: test_real_onesided_odd
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_real_onesided_odd(self):
x = np.zeros(16)
x[0] = 1
x[8] = 1
f, p = welch(x, nperseg=9)
assert_allclose(f, np.arange(5.0)/9.0)
assert_allclose(p, np.array([0.15958226, 0.24193954, 0.24145223,
0.24100919, 0.12188675]))
示例8: test_real_twosided
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_real_twosided(self):
x = np.zeros(16)
x[0] = 1
x[8] = 1
f, p = welch(x, nperseg=8, return_onesided=False)
assert_allclose(f, fftpack.fftfreq(8, 1.0))
assert_allclose(p, np.array([0.08333333, 0.07638889, 0.11111111,
0.11111111, 0.11111111, 0.11111111, 0.11111111, 0.07638889]))
示例9: test_real_spectrum
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_real_spectrum(self):
x = np.zeros(16)
x[0] = 1
x[8] = 1
f, p = welch(x, nperseg=8, scaling='spectrum')
assert_allclose(f, np.linspace(0, 0.5, 5))
assert_allclose(p, np.array([0.015625, 0.028645833333333332,
0.041666666666666664, 0.041666666666666664, 0.020833333333333332]))
示例10: test_complex
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_complex(self):
x = np.zeros(16, np.complex128)
x[0] = 1.0 + 2.0j
x[8] = 1.0 + 2.0j
f, p = welch(x, nperseg=8)
assert_allclose(f, fftpack.fftfreq(8, 1.0))
assert_allclose(p, np.array([0.41666667, 0.38194444, 0.55555556,
0.55555556, 0.55555556, 0.55555556, 0.55555556, 0.38194444]))
示例11: test_detrend_linear
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_detrend_linear(self):
x = np.arange(10, dtype=np.float64)+0.04
f, p = welch(x, nperseg=10, detrend='linear')
assert_allclose(p, np.zeros_like(p), atol=1e-15)
示例12: test_detrend_external
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_detrend_external(self):
x = np.arange(10, dtype=np.float64)+0.04
f, p = welch(x, nperseg=10,
detrend=lambda seg: signal.detrend(seg, type='l'))
assert_allclose(p, np.zeros_like(p), atol=1e-15)
示例13: test_detrend_external_nd_m1
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_detrend_external_nd_m1(self):
x = np.arange(40, dtype=np.float64)+0.04
x = x.reshape((2,2,10))
f, p = welch(x, nperseg=10,
detrend=lambda seg: signal.detrend(seg, type='l'))
assert_allclose(p, np.zeros_like(p), atol=1e-15)
示例14: test_detrend_external_nd_0
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_detrend_external_nd_0(self):
x = np.arange(20, dtype=np.float64)+0.04
x = x.reshape((2,1,10))
x = np.rollaxis(x, 2, 0)
f, p = welch(x, nperseg=10, axis=0,
detrend=lambda seg: signal.detrend(seg, axis=0, type='l'))
assert_allclose(p, np.zeros_like(p), atol=1e-15)
示例15: test_nd_axis_m1
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import welch [as 別名]
def test_nd_axis_m1(self):
x = np.arange(20, dtype=np.float64)+0.04
x = x.reshape((2,1,10))
f, p = welch(x, nperseg=10)
assert_array_equal(p.shape, (2, 1, 6))
assert_allclose(p[0,0,:], p[1,0,:], atol=1e-13, rtol=1e-13)
f0, p0 = welch(x[0,0,:], nperseg=10)
assert_allclose(p0[np.newaxis,:], p[1,:], atol=1e-13, rtol=1e-13)