當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.shape方法代碼示例

本文整理匯總了Python中scipy.signal.shape方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.shape方法的具體用法?Python signal.shape怎麽用?Python signal.shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: frame_signal

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def frame_signal(self, signal, window):
        
        frames = []
        for beg_i in range(0, signal.shape[0], self.hop):
            frame = signal[beg_i:beg_i + self.win]
            if len(frame) < self.win:
                # pad right size with zeros
                P = self.win - len(frame)
                frame = np.concatenate((frame,
                                        np.zeros(P,)), axis=0)
            frame = frame * window
            frames.append(frame[None, :])
        frames = np.concatenate(frames, axis=0)
        return frames

    # @profile 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:18,代碼來源:transforms.py

示例2: __call__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def __call__(self, pkg, cached_file=None):
        pkg = format_package(pkg)
        wav = pkg['chunk']
        y = wav.data.numpy()
        max_frames = y.shape[0] // self.hop
        if cached_file is not None:
            # load pre-computed data
            mfcc = torch.load(cached_file)
            beg_i = pkg['chunk_beg_i'] // self.hop
            end_i = pkg['chunk_end_i'] // self.hop
            mfcc = mfcc[:, beg_i:end_i]
            pkg[self.name] = mfcc
        else:
            # print(y.dtype)
            mfccs = self.__execute_command__(y, self.cmd)
            assert mfccs is not None, (
                "Mfccs extraction failed"
            )
            pkg[self.name] = torch.tensor(mfccs[:,:max_frames].astype(np.float32))

        # Overwrite resolution to hop length
        pkg['dec_resolution'] = self.hop
        return pkg 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:25,代碼來源:transforms.py

示例3: adjust_signals

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def adjust_signals(self, signal):
        """
        Add simple heuristics (based on examining learnt policy actions distribution):
        - repeat same buy or sell signal `kernel_size - 1` times.
        """
        i = 0
        while i < signal.shape[0]:
            j = 1
            if signal[i] != 0:
                # if got buy, sell or close  - repeat several times
                while i + j < signal.shape[0] and j < self.kernel_size - 1:
                    signal[i + j] = signal[i]
                    j += 1
            i = i + j

        return signal 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:18,代碼來源:oracle.py

示例4: fit_sphere

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def fit_sphere(z):
    """Fit a sphere to data.

    Parameters
    ----------
    z : `numpy.ndarray`
        2D array of data

    Returns
    -------
    `numpy.ndarray`
        sphere data

    """
    x, y = e.linspace(-1, 1, z.shape[1]), e.linspace(-1, 1, z.shape[0])
    xx, yy = e.meshgrid(x, y)
    pts = e.isfinite(z)
    xx_, yy_ = xx[pts].flatten(), yy[pts].flatten()
    rho, phi = cart_to_polar(xx_, yy_)
    focus = defocus(rho, phi)

    coefs = e.linalg.lstsq(e.stack([focus, e.ones(focus.shape)]).T, z[pts].flatten(), rcond=None)[0]
    rho, phi = cart_to_polar(xx, yy)
    sphere = defocus(rho, phi) * coefs[0]
    return sphere 
開發者ID:brandondube,項目名稱:prysm,代碼行數:27,代碼來源:interferogram.py

示例5: real_spectrum

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def real_spectrum(signal, axis=-1, **kwargs):

    try:
        import matplotlib.pyplot as plt
    except ImportError:
        import warnings

        warnings.warn("Matplotlib is required for plotting")
        return

    S = np.fft.rfft(signal, axis=axis)
    f = np.arange(S.shape[axis]) / float(2 * S.shape[axis])

    plt.subplot(2, 1, 1)
    P = dB(S)
    plt.plot(f, P, **kwargs)

    plt.subplot(2, 1, 2)
    phi = np.unwrap(np.angle(S))
    plt.plot(f, phi, **kwargs) 
開發者ID:LCAV,項目名稱:pyroomacoustics,代碼行數:22,代碼來源:utilities.py

示例6: resample

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def resample(signal, sc, clip = True, num_samples = None):
  #print 'Called', clip
  #ut.tic()
  if USE_SCIKITS_SAMPLERATE:
    r = np.array(scikits.samplerate.resample(signal, sc, 'sinc_best'), 'd')
    assert not np.any(np.isinf(r)) and not np.any(np.isnan(r))
  else:
    #print signal.shape[0], int(round(signal.shape[0] * sc))
    n = int(round(signal.shape[0] * sc)) if num_samples is None else num_samples
    #print 'converting:', signal.shape[0], '->', n
    r = scipy.signal.resample(signal, n)

  if clip:
    r = np.clip(r, -1, 1)
  #ut.toc()
  return r 
開發者ID:andrewowens,項目名稱:multisensory,代碼行數:18,代碼來源:subband.py

示例7: cut_signal

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def cut_signal(signal, new_sr, old_sr):
  new_signal = signal[: good_resample_length(signal.shape[0], new_sr, old_sr)]
  #print signal.shape[0], new_signal.shape[0]
  return new_signal

  #r = max(1, np.floor(old_sr / new_sr)) * (new_sr / 100)
  # r = 100
  # return signal[:int(np.floor(signal.shape[0] / r) * r)]

# original
# def good_resample_length(n, new_sr, old_sr, factor = 100):
#   assert new_sr % factor == 0 and old_sr % factor == 0
#   return int(np.floor(n / factor) * factor)

# def good_resample_length(n, new_sr, old_sr, factor = 100):
#   factor = new_sr / float(old_sr)
#   new_len = int(np.floor(n / factor) * factor)
#   print 'New length:', new_len, 'Factor:', factor
#   return new_len 
開發者ID:andrewowens,項目名稱:multisensory,代碼行數:21,代碼來源:subband.py

示例8: addnoise_asl

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def addnoise_asl(self, clean, noise, srate, nbits, snr, do_IRS=False):
        if do_IRS:
            # Apply IRS filter simulating telephone
            # handset BW [300, 3200] Hz
            clean = self.apply_IRS(clean, srate, nbits)
        Px, asl, c0 = self.asl_P56(clean, srate, nbits)
        # Px is active speech level ms energy
        # asl is active factor
        # c0 is active speech level threshold
        x = clean
        x_len = x.shape[0]

        noise_len = noise.shape[0]
        if noise_len <= x_len:
            print('Noise length: ', noise_len)
            print('Speech length: ', x_len)
            raise ValueError('Noise length has to be greater than speech '
                             'length!')
        rand_start_limit = int(noise_len - x_len + 1)
        rand_start = int(np.round((rand_start_limit - 1) * np.random.rand(1) \
                                  + 1))
        noise_segment = noise[rand_start:rand_start + x_len]
        noise_bounds = (rand_start, rand_start + x_len)

        if do_IRS:
            noise_segment = self.apply_IRS(noise_segment, srate, nbits)

        Pn = np.dot(noise_segment.T, noise_segment) / x_len

        # we need to scale the noise segment samples to obtain the
        # desired SNR = 10 * log10( Px / ((sf ** 2) * Pn))
        sf = np.sqrt(Px / Pn / (10 ** (snr / 10)))
        noise_segment = noise_segment * sf

        noisy = x + noise_segment

        return noisy, noise_bounds 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:39,代碼來源:transforms.py

示例9: estimate_actions

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def estimate_actions(self, episode_data):
        """
        Estimates hold/buy/sell signals based on local peaks filtered by time horizon and signal amplitude.

        Args:
            episode_data:   1D np.array of unscaled [but possibly resampled] price values in OHL[CV] format

        Returns:
            1D vector of signals of same length as episode_data
        """
        # Find local maxima and minima indices within time horizon:
        max_ind = signal.argrelmax(episode_data, order=self.time_threshold)
        min_ind = signal.argrelmin(episode_data, order=self.time_threshold)
        indices = np.append(max_ind, min_ind)
        # Append first and last points:
        indices = np.append(indices, [0, episode_data.shape[0] - 1])
        indices = np.sort(indices)

        indices_and_values = []

        for i in indices:
            indices_and_values.append([episode_data[i], i])

        # Filter by value:
        indices_and_values = self.filter_by_margine(indices_and_values, self.value_threshold)

        #print('filtered_indices_and_values:', indices_and_values)

        # Estimate advised actions (no 'close' btw):
        # Assume all 'hold':
        advice = np.ones(episode_data.shape[0], dtype=np.uint32) * self.action_space[0]

        for num, (v, i) in enumerate(indices_and_values[:-1]):
            if v < indices_and_values[num + 1][0]:
                advice[i] = self.action_space[1]

            else:
                advice[i] = self.action_space[2]

        return advice 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:42,代碼來源:oracle.py

示例10: fit

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def fit(self, episode_data, resampling_factor=1):
        """
        Estimates `advised` actions probabilities distribution based on data received.

        Args:
            episode_data:           1D np.array of unscaled price values in OHL[CV] format
            resampling_factor:      factor by which to resample given data
                                    by taking min/max values inside every resampled bar

        Returns:
             Np.array of size [resampled_data_size, actions_space_size] of probabilities of advised actions, where
             resampled_data_size = int(len(episode_data) / resampling_factor) + 1/0

        """
        # Vector of advised actions:
        data = self.resample_data(episode_data, resampling_factor)
        signals = self.estimate_actions(data)
        signals = self.adjust_signals(signals)

        # One-hot actions encoding:
        actions_one_hot = np.zeros([signals.shape[0], len(self.action_space)])
        actions_one_hot[np.arange(signals.shape[0]), signals] = 1

        # Want a bit relaxed discrete distribution over actions instead of one hot (heuristic):
        actions_distr = np.zeros(actions_one_hot.shape)

        # For all actions except 'hold' (due to heuristic skewness):
        actions_distr[:, 0] = actions_one_hot[:, 0]

        # ...spread out actions probabilities by convolving with gaussian kernel :
        for channel in range(1, actions_one_hot.shape[-1]):
            actions_distr[:, channel] = np.convolve(actions_one_hot[:, channel], self.kernel, mode='same') + 0.1

        # Normalize:
        actions_distr /= actions_distr.sum(axis=-1)[..., None]

        return actions_distr 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:39,代碼來源:oracle.py

示例11: resample_data

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def resample_data(self, episode_data, factor=1):
        """
        Resamples raw observations according to given skip_frame value
        and estimates mean value of newly formed bars.

        Args:
            episode_data:   np.array of shape [episode_length, values]
            factor:         scalar

        Returns:
            np.array of median Hi/Lo observations of size [int(episode_length/skip_frame) + 1, 1]
        """
        # Define resampled size and [possibly] extend
        # to complete last bar by padding with values from very last column:
        resampled_size = int(episode_data.shape[0] / factor)
        #print('episode_data.shape:', episode_data.shape)

        if episode_data.shape[0] / factor > resampled_size:
            resampled_size += 1
            pad_size = resampled_size * factor - episode_data.shape[0]
            #print('pad_size:', pad_size)
            episode_data = np.append(
                episode_data,
                np.zeros([pad_size, episode_data.shape[-1]]) + episode_data[-1, :][None,:],
                axis=0
            )
        #print('new_episode_data.shape:', episode_data.shape)

        # Define HI and Low inside every new bar:
        v_high = np.reshape(episode_data[:,1], [resampled_size, -1]).max(axis=-1)
        v_low = np.reshape(episode_data[:, 2], [resampled_size, -1]).min(axis=-1)

        # ...and yse Hi/Low mean along time_embedding:
        data = np.stack([v_high, v_low], axis=-1).mean(axis=-1)

        return data 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:38,代碼來源:oracle.py

示例12: fit_plane

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def fit_plane(x, y, z):
    """Fit a plane to data.

    Parameters
    ----------
    x : `numpy.ndarray`
        1D array of x (axis 1) values
    y : `numpy.ndarray`
        1D array of y (axis 0) values
    z : `numpy.ndarray`
        2D array of z values

    Returns
    -------
    `numpy.ndarray`
        array representation of plane

    """
    pts = e.isfinite(z)
    if len(z.shape) > 1:
        x, y = e.meshgrid(x, y)
        xx, yy = x[pts].flatten(), y[pts].flatten()
    else:
        xx, yy = x, y

    flat = e.ones(xx.shape)

    coefs = e.linalg.lstsq(e.stack([xx, yy, flat]).T, z[pts].flatten(), rcond=None)[0]
    plane_fit = coefs[0] * x + coefs[1] * y + coefs[2]
    return plane_fit 
開發者ID:brandondube,項目名稱:prysm,代碼行數:32,代碼來源:interferogram.py

示例13: psd

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def psd(height, sample_spacing, window=None):
    """Compute the power spectral density of a signal.

    Parameters
    ----------
    height : `numpy.ndarray`
        height or phase data
    sample_spacing : `float`
        spacing of samples in the input data
    window : {'welch', 'hann'} or ndarray, optional

    Returns
    -------
    x : `numpy.ndarray`
        ordinate x frequency axis
    y : `numpy.ndarray`
        ordinate y frequency axis
    psd : `numpy.ndarray`
        power spectral density

    Notes
    -----
    See GH_FFT for a rigorous treatment of FFT scalings
    https://holometer.fnal.gov/GH_FFT.pdf

    """
    window = make_window(height, sample_spacing, window)
    fft = e.fft.ifftshift(e.fft.fft2(e.fft.fftshift(height * window)))
    psd = abs(fft)**2  # mag squared first as per GH_FFT

    fs = 1 / sample_spacing
    S2 = (window**2).sum()
    coef = S2 * fs * fs
    psd /= coef

    ux = forward_ft_unit(sample_spacing, height.shape[1])
    uy = forward_ft_unit(sample_spacing, height.shape[0])
    return ux, uy, psd 
開發者ID:brandondube,項目名稱:prysm,代碼行數:40,代碼來源:interferogram.py

示例14: synthesize_surface_from_psd

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def synthesize_surface_from_psd(psd, nu_x, nu_y):
    """Synthesize a surface height map from PSD data.

    Parameters
    ----------
    psd : `numpy.ndarray`
        PSD data, units nm²/(cy/mm)²
    nu_x : `numpy.ndarray`
        x spatial frequency, cy/mm
    nu_y : `numpy.ndarray`
        y spatial frequency, cy_mm

    """
    # generate a random phase to be matched to the PSD
    randnums = e.random.rand(*psd.shape)
    randfft = e.fft.fft2(randnums)
    phase = e.angle(randfft)

    # calculate the output window
    # the 0th element of nu_y has the greatest frequency in magnitude because of
    # the convention to put the nyquist sample at -fs instead of +fs for even-size arrays
    fs = -2 * nu_y[0]
    dx = dy = 1 / fs
    ny, nx = psd.shape
    x, y = e.arange(nx) * dx, e.arange(ny) * dy

    # calculate the area of the output window, "S2" in GH_FFT notation
    A = x[-1] * y[-1]

    # use ifft to compute the PSD
    signal = e.exp(1j * phase) * e.sqrt(A * psd)

    coef = 1 / dx / dy
    out = e.fft.ifftshift(e.fft.ifft2(e.fft.fftshift(signal))) * coef
    out = out.real
    return x, y, out 
開發者ID:brandondube,項目名稱:prysm,代碼行數:38,代碼來源:interferogram.py

示例15: pvr

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import shape [as 別名]
def pvr(self):
        """Peak-to-Valley residual.

        Notes
        -----
        See:
        C. Evans, "Robust Estimation of PV for Optical Surface Specification and Testing"
        in Optical Fabrication and Testing, OSA Technical Digest (CD)
        (Optical Society of America, 2008), paper OWA4.
        http://www.opticsinfobase.org/abstract.cfm?URI=OFT-2008-OWA4

        """
        coefs, residual = zernikefit(self.phase, terms=36, residual=True, map_='Fringe')
        fz = FringeZernike(coefs, samples=self.shape[0])
        return fz.pv + 3 * residual 
開發者ID:brandondube,項目名稱:prysm,代碼行數:17,代碼來源:interferogram.py


注:本文中的scipy.signal.shape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。