本文整理匯總了Python中scipy.signal.savgol_filter方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.savgol_filter方法的具體用法?Python signal.savgol_filter怎麽用?Python signal.savgol_filter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.savgol_filter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: smear
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def smear(self, sw):
_logger.debug('smearing the beam by {:.2e} m'.format(sw))
self.equidist()
sn = (sw / self.ds).astype(int)
if sn < 2:
return
if not sn % 2:
sn += 1
for attr in self.params():
if attr is 's':
continue
val = getattr(self, attr)
val = savgol_filter(val, sn, 2, mode='nearest')
if attr in ['E', 'I', 'beta_x', 'beta_y', 'emit_x', 'emit_y', 'sigma_E']:
# print('attribute {:s} < 0, setting to 0'.format(attr))
val[val < 0] = 0
# val = convolve(val,spike,mode='same')
setattr(self, attr, val)
示例2: CAE_dataset_feed_dict
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def CAE_dataset_feed_dict(prefix,np_path_box,dataset_name):
path_box_list=np.load(np_path_box)
(image_height, image_width) = image_size_map[dataset_name]
former_paths,gray_paths,back_paths,boxes,class_indexes=split_path_boxes(prefix,path_box_list,dataset_name,image_height,image_width)
f_imgs=[]
g_imgs=[]
b_imgs=[]
for f_path,g_path,b_path,box in zip(former_paths,gray_paths,back_paths,boxes):
f_imgs.append(box_image_crop(f_path,box))
g_imgs.append(box_image_crop(g_path,box))
b_imgs.append(box_image_crop(b_path,box))
return f_imgs,g_imgs,b_imgs,class_indexes
# def score_smoothing(score):
# score_len=score.shape[0]//9
# if score_len%2==0:
# score_len+=1
# score=savgol_filter(score,score_len,3)
#
# return score
#
示例3: find_angle_graph
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def find_angle_graph(velocity, vertical_velocity, interp=False):
angle = []
for i in range(len(velocity)):
if velocity[i] == 0:
angle.append(angle[-1])
else:
ratio = max(-1, min(vertical_velocity[i] / velocity[i], 1))
angle.append(asin(ratio))
angle = savgol_filter(angle, 5, 1)
if interp:
angle = savgol_filter(angle, 11, 1)
return ss.medfilt(angle, kernel_size=7)
return angle
示例4: find_peak_vextors_eagerly
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def find_peak_vextors_eagerly(price, offest=0):
"""
(饑渴的)在 MACD 上坡的時候查找更多的極值點
"""
xn = price
# pass 0
window_size, poly_order = 5, 1
yy_sg = savgol_filter(xn, window_size, poly_order)
# pass 1
x_tp_min, x_tp_max = signal.argrelextrema(yy_sg, np.less)[0], signal.argrelextrema(yy_sg, np.greater)[0]
n = int(len(price) / (len(x_tp_min) + len(x_tp_max))) * 2
# peakutils 似乎一根筋隻能查最大極值,通過曲線反相的方式查找極小點
mirrors = (yy_sg * -1) + np.mean(price) * 2
# pass 2 使用 peakutils 查找
x_tp_max = peakutils.indexes(yy_sg, thres=0.01 / max(price), min_dist=n)
x_tp_min = peakutils.indexes(mirrors, thres=0.01 / max(price), min_dist=n)
return x_tp_min + offest, x_tp_max + offest
示例5: test_sg_filter_trivial
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def test_sg_filter_trivial():
""" Test some trivial edge cases for savgol_filter()."""
x = np.array([1.0])
y = savgol_filter(x, 1, 0)
assert_equal(y, [1.0])
# Input is a single value. With a window length of 3 and polyorder 1,
# the value in y is from the straight-line fit of (-1,0), (0,3) and
# (1, 0) at 0. This is just the average of the three values, hence 1.0.
x = np.array([3.0])
y = savgol_filter(x, 3, 1, mode='constant')
assert_almost_equal(y, [1.0], decimal=15)
x = np.array([3.0])
y = savgol_filter(x, 3, 1, mode='nearest')
assert_almost_equal(y, [3.0], decimal=15)
x = np.array([1.0] * 3)
y = savgol_filter(x, 3, 1, mode='wrap')
assert_almost_equal(y, [1.0, 1.0, 1.0], decimal=15)
示例6: get_dVdI
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def get_dVdI(self):
"""
Gets the internal dVdI parameter, to decide weather the differential resistance (dV/dI) is calculated or not.
Parameters
----------
None
Returns
-------
status: bool
Status if numerical derivative is calculated.
func: function
Function to calculate numerical derivative, e.g. scipy.signal.savgol_filter (default), numpy.gradient, ...
*args: array_likes
Arguments for derivation function.
**kwargs: dictionary_likes
Keyword arguments for derivation function.
"""
return self._dVdI, self._numder_func, self._numder_args, self._numder_kwargs
示例7: plot_epoch_y_curves_correlation
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def plot_epoch_y_curves_correlation(metric_dict, title, xlabel, ylabel, foldername, x_log, y_log, smoothing=False,
filename=None, max_iter=None):
plt.figure()
for config, values in metric_dict.items():
if smoothing:
values = [savgol_filter(value, 11, 3) for value in values]
plt.plot(np.arange(len(values)), values, label=config)
ax = plt.gca()
if x_log:
ax.set_xscale('log')
if y_log:
ax.set_yscale('log')
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.legend()
plt.grid(True, which="both", ls="-", alpha=0.5)
plt.tight_layout()
folder_path = os.path.join(os.getcwd(), foldername)
os.makedirs(folder_path, exist_ok=True)
filepath = os.path.join(folder_path, '{}.pdf'.format(filename)),
plt.savefig(filepath[0])
plt.close()
示例8: transform
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def transform(self,X):
"""Detrend each column of X
Parameters
----------
X : DataFrame in `traces` structure [n_samples, n_traces]
Returns
-------
Xt : DataFrame in `traces` structure [n_samples, n_traces]
The detrended data.
"""
self.fit_params = {}
X_new = X.copy()
for col in X.columns:
tmp_data = X[col].values.astype(np.double)
sgf = savgol_filter(tmp_data, self.window, self.order)
self.fit_params[col] = dict(sgf=sgf)
X_new[col] = tmp_data - sgf
return X_new
示例9: getdata
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def getdata(name):
all_results = []
for i in range(0, 50):
f = open(name + str(i) + ".csv", "r")
results = []
time = []
for line in f:
step, reward = (line.replace("\n", "")).split(",")
results.append(float(reward))
time.append(float(step))
results = signal.savgol_filter(results, 7, 3, axis=-1)
all_results.append(results)
return all_results, time
# Load the data.
示例10: _h_smooth_curve
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def _h_smooth_curve(curve, window=5, pol_degree=3):
'''smooth curves using the savgol_filter'''
if curve.shape[0] < window:
# nothing to do here return an empty array
return np.full_like(curve, np.nan)
# consider the case of one (widths) or two dimensions (skeletons, contours)
if curve.ndim == 1:
smoothed_curve = savgol_filter(curve, window, pol_degree)
else:
smoothed_curve = np.zeros_like(curve)
for nn in range(curve.ndim):
smoothed_curve[:, nn] = savgol_filter(
curve[:, nn], window, pol_degree)
return smoothed_curve
示例11: smoothSkeletons
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def smoothSkeletons(
skeleton,
length_resampling=131,
smooth_win=11,
pol_degree=3):
xx = savgol_filter(skeleton[:, 0], smooth_win, pol_degree)
yy = savgol_filter(skeleton[:, 1], smooth_win, pol_degree)
ii = np.arange(xx.size)
ii_new = np.linspace(0, xx.size - 1, length_resampling)
fx = interp1d(ii, xx)
fy = interp1d(ii, yy)
xx_new = fx(ii_new)
yy_new = fy(ii_new)
skel_new = np.vstack((xx_new, yy_new)).T
return skel_new
示例12: plot_log
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def plot_log(x, y, save_name, key):
fig = plt.figure()
plt.title(key)
plt.xlabel("iter")
plt.ylabel(key)
if key in ["loss"]:
plt.axis([x[0], x[-1], 0, 2.5])
if key in ["loss_rpn_bbox_fpn2", "loss_rpn_bbox_fpn3", "loss_rpn_bbox_fpn4", "loss_rpn_bbox_fpn5", "loss_rpn_bbox_fpn6"]:
plt.axis([x[0], x[-1], 0, 0.01])
if key in ["loss_rpn_cls_fpn2", "loss_rpn_cls_fpn3", "loss_rpn_cls_fpn4", "loss_rpn_cls_fpn5", "loss_rpn_cls_fpn6"]:
plt.axis([x[0], x[-1], 0, 0.02])
if key in ["loss_char_bbox"]:
plt.axis([x[0], x[-1], 0, 0.05])
if key in ["loss_global_mask", "loss_char_mask"]:
plt.axis([x[0], x[-1], 0, 0.4])
if key in ["accuracy_cls"]:
plt.axis([x[0], x[-1], 0.9, 1])
if key in ["loss_char_bbox"]:
plt.axis([x[0], x[-1], 0, 0.01])
plt.plot(x, y, 'r-', lw=2)
plt.plot(x, smooth(y, 20), 'g-', lw=2)
# plt.plot(x, savgol_filter(y, 51, 3), 'g-', lw=2)
fig.savefig(save_name)
示例13: smooth_filter
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def smooth_filter(kpts):
if len(kpt_queue) < 6:
kpt_queue.append(kpts)
return kpts
queue_length = len(kpt_queue)
if queue_length == 20:
kpt_queue.pop(0)
kpt_queue.append(kpts)
# transpose to shape (17, 2, num, 50) 關節點、橫縱坐標、每幀人數、幀數
transKpts = np.array(kpt_queue).transpose(1,2,3,0)
window_length = queue_length - 1 if queue_length % 2 == 0 else queue_length - 2
# array, window_length越大越好, polyorder
result = savgol_filter(transKpts, window_length, 3).transpose(3, 0, 1, 2) #shape(frame_num, human_num, 17, 2)
# return the 2rd last frame
return result[-2]
##### load model
示例14: generateRegressionMap
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def generateRegressionMap(self):
"""Uses the fast marching method to generate an image of how the grain regresses from the core map. The map
is stored under self.regressionMap."""
masked = np.ma.MaskedArray(self.coreMap, self.mask)
cellSize = 1 / self.mapDim
self.regressionMap = skfmm.distance(masked, dx=cellSize) * 2
maxDist = np.amax(self.regressionMap)
self.wallWeb = self.unNormalize(maxDist)
faceArea = []
polled = []
valid = np.logical_not(self.mask)
for i in range(int(maxDist * self.mapDim) + 2):
polled.append(i / self.mapDim)
faceArea.append(self.mapToArea(np.count_nonzero(np.logical_and(self.regressionMap > (i / self.mapDim), valid))))
self.faceArea = savgol_filter(faceArea, 31, 5)
self.faceAreaFunc = interpolate.interp1d(polled, self.faceArea)
示例15: smooth_filter
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import savgol_filter [as 別名]
def smooth_filter(kpts):
if len(kpt_queue) < 6:
kpt_queue.append(kpts)
return kpts
queue_length = len(kpt_queue)
if queue_length == 50:
kpt_queue.pop(0)
kpt_queue.append(kpts)
# transpose to shape (17, 2, num, 50) 關節點、橫縱坐標、每幀人數、幀數
transKpts = np.array(kpt_queue).transpose(1, 2, 3, 0)
window_length = queue_length - 1 if queue_length % 2 == 0 else queue_length - 2
# array, window_length越大越好, polyorder
result = savgol_filter(transKpts, window_length, 3).transpose(3, 0, 1, 2) # shape(frame_num, human_num, 17, 2)
# 返回倒數第幾幀
return result[-3]
##### load model