本文整理匯總了Python中scipy.signal.resample_poly方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.resample_poly方法的具體用法?Python signal.resample_poly怎麽用?Python signal.resample_poly使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.resample_poly方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def test_basic(self):
# Some basic tests
# Regression test for issue #3603.
# window.shape must equal to sig.shape[0]
sig = np.arange(128)
num = 256
win = signal.get_window(('kaiser', 8.0), 160)
assert_raises(ValueError, signal.resample, sig, num, window=win)
# Other degenerate conditions
assert_raises(ValueError, signal.resample_poly, sig, 'yo', 1)
assert_raises(ValueError, signal.resample_poly, sig, 1, 0)
# test for issue #6505 - should not modify window.shape when axis ≠ 0
sig2 = np.tile(np.arange(160), (2,1))
signal.resample(sig2, num, axis=-1, window=win)
assert_(win.shape == (160,))
示例2: bb2pb
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def bb2pb(x, fd, fc, fs=None, axis=-1):
"""Convert baseband signal to passband.
For communication applications, one may wish to use :func:`arlpy.comms.upconvert` instead,
as that function supports pulse shaping.
The convention used in that exp(2j*pi*fc*t) is a positive frequency carrier.
:param x: complex baseband signal
:param fd: sampling rate of baseband signal in Hz
:param fc: carrier frequency in passband in Hz
:param fs: sampling rate of passband signal in Hz (``None`` => same as `fd`)
:param axis: axis of the signal, if multiple signals specified
:returns: real passband signal, sampled at `fs`
"""
if fs is None or fs == fd:
y = _np.array(x, dtype=_np.complex)
fs = fd
else:
y = _sig.resample_poly(_np.asarray(x, dtype=_np.complex), fs, fd, axis=axis)
osc = _np.sqrt(2)*_np.exp(2j*_np.pi*fc*time(y,fs))
y *= _utils.broadcastable_to(osc, y.shape, axis)
return y.real
示例3: feature_extraction
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def feature_extraction(filename):
x, fs = sf.read(filename)
if len(x.shape)>1:
x = np.mean(x, axis = 1)
#x = x[:3*fs]
x = signal.resample_poly(x, 16000, fs)
fs = 16000.0 # sampling frequency
x = x.astype('float32')
Hop = 320 # hop size (in sample)
h = scipy.signal.blackmanharris(2049) # window size
fr = 2.0 # frequency resolution
fc = 27.5#80.0 # the frequency of the lowest pitch
tc = 1/4487.0#1/1000.0 # the period of the highest pitch
g = np.array([0.24, 0.6, 1])
NumPerOctave = 48 # Number of bins per octave
#f --> freq for each axis
tfrL0, tfrLF, tfrLQ, f, q, t, CenFreq = CFP_filterbank(x, fr, fs, Hop, h, fc, tc, g, NumPerOctave)
Z = tfrLF * tfrLQ
return Z, tfrL0, tfrLF, tfrLQ, t, CenFreq
示例4: feature_extraction
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def feature_extraction(filename):
x, fs = sf.read(filename)
if len(x.shape)>1:
x = np.mean(x, axis = 1)
#x = x[:3*fs]
x = signal.resample_poly(x, 16000, fs)
fs = 16000.0 # sampling frequency
x = x.astype('float32')
Hop = 320 # hop size (in sample)
h = scipy.signal.blackmanharris(2049) # window size
fr = 2.0 # frequency resolution
fc = 27.5#80.0 # the frequency of the lowest pitch
tc = 1/4487.0#1/1000.0 # the period of the highest pitch
g = np.array([0.24, 0.6, 1])
NumPerOctave = 48 # Number of bins per octave
#f --> freq for each axis
tfrL0, tfrLF, tfrLQ, f, q, t, CenFreq = CFP_filterbank(x, fr, fs, Hop, h, fc, tc, g, NumPerOctave)
Z = tfrLF * tfrLQ
return Z, tfrL0, tfrLF, tfrLQ, t, CenFreq, f
示例5: resample
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def resample(waveform, s_sr, t_sr):
"""resampling for waveforms, should work also with when source and
target rate ratio is fractional
Parameters
----------
waveform: np.array
speech waveform, mono
s_sr: float
original sample rate
t_sr: float
target sample rate
returns: resampled waveform as np.array
"""
ratio = fractions.Fraction(int(t_sr), int(s_sr))
return resample_poly(waveform, ratio.numerator, ratio.denominator)
示例6: test_mutable_window
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def test_mutable_window(self):
# Test that a mutable window is not modified
impulse = np.zeros(3)
window = np.random.RandomState(0).randn(2)
window_orig = window.copy()
signal.resample_poly(impulse, 5, 1, window=window)
assert_array_equal(window, window_orig)
示例7: test_poly_vs_filtfilt
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def test_poly_vs_filtfilt(self):
# Check that up=1.0 gives same answer as filtfilt + slicing
random_state = np.random.RandomState(17)
try_types = (int, np.float32, np.complex64, float, complex)
size = 10000
down_factors = [2, 11, 79]
for dtype in try_types:
x = random_state.randn(size).astype(dtype)
if dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
# resample_poly assumes zeros outside of signl, whereas filtfilt
# can only constant-pad. Make them equivalent:
x[0] = 0
x[-1] = 0
for down in down_factors:
h = signal.firwin(31, 1. / down, window='hamming')
yf = filtfilt(h, 1.0, x, padtype='constant')[::down]
# Need to pass convolved version of filter to resample_poly,
# since filtfilt does forward and backward, but resample_poly
# only goes forward
hc = convolve(h, h[::-1])
y = signal.resample_poly(x, 1, down, window=hc)
assert_allclose(yf, y, atol=1e-7, rtol=1e-7)
示例8: test_correlate1d
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def test_correlate1d(self):
for down in [2, 4]:
for nx in range(1, 40, down):
for nweights in (32, 33):
x = np.random.random((nx,))
weights = np.random.random((nweights,))
y_g = correlate1d(x, weights[::-1], mode='constant')
y_s = signal.resample_poly(x, up=1, down=down, window=weights)
assert_allclose(y_g[::down], y_s)
示例9: pb2bb
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def pb2bb(x, fs, fc, fd=None, flen=127, cutoff=None, axis=-1):
"""Convert passband signal to baseband.
The baseband conversion uses a low-pass filter after downconversion, with a
default cutoff frequency of `0.6*fd`, if `fd` is specified, or `1.1*fc` if `fd`
is not specified. Alternatively, the user may specify the cutoff frequency
explicitly.
For communication applications, one may wish to use :func:`arlpy.comms.downconvert` instead,
as that function supports matched filtering with a pulse shape rather than a generic
low-pass filter.
The convention used in that exp(2j*pi*fc*t) is a positive frequency carrier.
:param x: passband signal
:param fs: sampling rate of passband signal in Hz
:param fc: carrier frequency in passband in Hz
:param fd: sampling rate of baseband signal in Hz (``None`` => same as `fs`)
:param flen: number of taps in the low-pass FIR filter
:param cutoff: cutoff frequency in Hz (``None`` means auto-select)
:param axis: axis of the signal, if multiple signals specified
:returns: complex baseband signal, sampled at `fd`
"""
if cutoff is None:
cutoff = 0.6*fd if fd is not None else 1.1*_np.abs(fc)
osc = _np.sqrt(2)*_np.exp(-2j*_np.pi*fc*time(x.shape[axis],fs))
y = x * _utils.broadcastable_to(osc, x.shape, axis)
hb = _sig.firwin(flen, cutoff=cutoff, nyq=fs/2.0)
y = _sig.filtfilt(hb, 1, y, axis=axis)
if fd is not None and fd != fs:
y = _sig.resample_poly(y, 2*fd, fs, axis=axis)
y = _np.apply_along_axis(lambda a: a[::2], axis, y)
return y
示例10: poly_resample
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def poly_resample(psg, new_sample_rate, old_sample_rate):
from scipy.signal import resample_poly
return resample_poly(psg, new_sample_rate, old_sample_rate, axis=0)
示例11: resample
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def resample(audio, orig_sr, new_sr):
orig_dtype = audio.dtype
factor = gcd(orig_sr, new_sr)
down = orig_sr / factor
up = new_sr / factor
audio = resample_poly(audio, up, down).astype(orig_dtype)
return audio
示例12: _preprocess
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def _preprocess(ifilename, rate, chunk_length):
# data within [-32768 / 2, 32767 / 2] interval
baserate, data = wavfile.read(ifilename)
audio = signal.resample_poly(data, rate, baserate)
# audio within [0; 1] interval: wav_to_float converts it to be in [-1;1] interval
# mulaw leaves it within same interval, then we shift it to be in [0;1] interval
audio = mulaw(wav_to_float(audio)) * 0.5 + 0.5
while len(audio) >= chunk_length:
yield audio[:chunk_length]
audio = audio[chunk_length:]
示例13: _read_record
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def _read_record(self, f, blk, chans):
"""Read raw data from a single EDF channel.
Parameters
----------
i_chan : int
index of the channel to read
begsam : int
index of the first sample
endsam : int
index of the last sample
Returns
-------
numpy.ndarray
A vector with the data as written on file, in 16-bit precision
"""
dat_in_rec = empty((len(chans), self.max_smp))
i_ch_in_dat = 0
for i_ch in chans:
offset, n_smp_per_chan = self._offset(blk, i_ch)
f.seek(offset)
x = fromfile(f, count=n_smp_per_chan, dtype=EDF_FORMAT)
ratio = self.max_smp / n_smp_per_chan
if ratio.is_integer():
dat_in_rec[i_ch_in_dat, :] = repeat(x, int(ratio))
else:
fract = round(Fraction(ratio), 2)
up, down = fract.numerator, fract.denominator
dat_in_rec[i_ch_in_dat, :] = resample_poly(x, up, down)
i_ch_in_dat += 1
return dat_in_rec
示例14: resample_oct
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def resample_oct(x, p, q):
"""Resampler that is compatible with Octave"""
h = _resample_window_oct(p, q)
window = h / np.sum(h)
return resample_poly(x, p, q, window=window)
示例15: __init__
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample_poly [as 別名]
def __init__(self, timeaxis, timecourse, padvalue=30.0, upsampleratio=100, doplot=False, debug=False,
method='univariate'):
self.upsampleratio = upsampleratio
self.padvalue = padvalue
self.initstep = timeaxis[1] - timeaxis[0]
self.initstart = timeaxis[0]
self.initend = timeaxis[-1]
self.hiresstep = self.initstep / np.float64(self.upsampleratio)
self.hires_x = np.arange(timeaxis[0] - self.padvalue, self.initstep * len(timeaxis) + self.padvalue,
self.hiresstep)
self.hiresstart = self.hires_x[0]
self.hiresend = self.hires_x[-1]
if method == 'poly':
self.hires_y = 0.0 * self.hires_x
self.hires_y[int(self.padvalue // self.hiresstep) + 1:-(int(self.padvalue // self.hiresstep) + 1)] = \
signal.resample_poly(timecourse, np.int(self.upsampleratio * 10), 10)
elif method == 'fourier':
self.hires_y = 0.0 * self.hires_x
self.hires_y[int(self.padvalue // self.hiresstep) + 1:-(int(self.padvalue // self.hiresstep) + 1)] = \
signal.resample(timecourse, self.upsampleratio * len(timeaxis))
else:
self.hires_y = doresample(timeaxis, timecourse, self.hires_x, method=method)
self.hires_y[:int(self.padvalue // self.hiresstep)] = self.hires_y[int(self.padvalue // self.hiresstep)]
self.hires_y[-int(self.padvalue // self.hiresstep):] = self.hires_y[-int(self.padvalue // self.hiresstep)]
if debug:
print('fastresampler __init__:')
print(' padvalue:, ', self.padvalue)
print(' initstep, hiresstep:', self.initstep, self.hiresstep)
print(' initial axis limits:', self.initstart, self.initend)
print(' hires axis limits:', self.hiresstart, self.hiresend)
# self.hires_y[:int(self.padvalue // self.hiresstep)] = 0.0
# self.hires_y[-int(self.padvalue // self.hiresstep):] = 0.0
if doplot:
fig = pl.figure()
ax = fig.add_subplot(111)
ax.set_title('fastresampler initial timecourses')
pl.plot(timeaxis, timecourse, self.hires_x, self.hires_y)
pl.legend(('input', 'hires'))
pl.show()