當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.resample方法代碼示例

本文整理匯總了Python中scipy.signal.resample方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.resample方法的具體用法?Python signal.resample怎麽用?Python signal.resample使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.resample方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _wavdata_rs

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def _wavdata_rs(self):
        if self.fs_rs is not None:
            # Number of points in resample
            ns_rs = np.int_(np.ceil(self.ns * self.fs_rs / self.fs))
            # Do resample
            # XXX: Tried using a Hamming window as a low pass filter, but it
            #      didn't seem to make a big difference, so it's not used
            #      here.
            data_rs = resample(self.wavdata, ns_rs)
            wavpath_rs = self.wavpath.split('.')[0] + '-resample-' + str(self.fs_rs) + 'Hz.wav'
            # Write resampled data to wav file
            # Convert data from 32-bit floating point to 16-bit PCM
            data_rs_int = np.int16(data_rs * 32768)
            wavfile.write(wavpath_rs, self.fs_rs, data_rs_int)
            # XXX: Was worried that Python might continue executing code
            #      before the file write is finished, but it seems like it's
            #      not an issue.
            return wavpath_rs, data_rs, data_rs_int, ns_rs
        else:
            return None, None, None, None 
開發者ID:voicesauce,項目名稱:opensauce-python,代碼行數:22,代碼來源:soundfile.py

示例2: test_basic

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def test_basic(self):
        # Some basic tests

        # Regression test for issue #3603.
        # window.shape must equal to sig.shape[0]
        sig = np.arange(128)
        num = 256
        win = signal.get_window(('kaiser', 8.0), 160)
        assert_raises(ValueError, signal.resample, sig, num, window=win)

        # Other degenerate conditions
        assert_raises(ValueError, signal.resample_poly, sig, 'yo', 1)
        assert_raises(ValueError, signal.resample_poly, sig, 1, 0)

        # test for issue #6505 - should not modify window.shape when axis ≠ 0
        sig2 = np.tile(np.arange(160), (2,1))
        signal.resample(sig2, num, axis=-1, window=win)
        assert_(win.shape == (160,)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:test_signaltools.py

示例3: get_traces

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def get_traces(self, channel_ids=None, start_frame=None, end_frame=None):
        start_frame_not_sampled = int(start_frame / self.get_sampling_frequency() *
                                      self._recording.get_sampling_frequency())
        start_frame_sampled = start_frame
        end_frame_not_sampled = int(end_frame / self.get_sampling_frequency() *
                                    self._recording.get_sampling_frequency())
        end_frame_sampled = end_frame
        traces = self._recording.get_traces(start_frame=start_frame_not_sampled,
                                            end_frame=end_frame_not_sampled,
                                            channel_ids=channel_ids)
        if np.mod(self._recording.get_sampling_frequency(), self._resample_rate) == 0:
            traces_resampled = signal.decimate(traces,
                                               q=int(self._recording.get_sampling_frequency() / self._resample_rate),
                                               axis=1)
        else:
            traces_resampled = signal.resample(traces, int(end_frame_sampled - start_frame_sampled), axis=1)
        return traces_resampled.astype(self._dtype) 
開發者ID:SpikeInterface,項目名稱:spiketoolkit,代碼行數:19,代碼來源:resample.py

示例4: resample

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def resample(recording, resample_rate):
    '''
    Resamples the recording extractor traces. If the resampling rate is multiple of the sampling rate, the faster
    scipy decimate function is used.

    Parameters
    ----------
    recording: RecordingExtractor
        The recording extractor to be resampled
    resample_rate: int or float
        The resampling frequency

    Returns
    -------
    resampled_recording: ResampleRecording
        The resample recording extractor

    '''
    return ResampleRecording(
        recording=recording,
        resample_rate=resample_rate
    ) 
開發者ID:SpikeInterface,項目名稱:spiketoolkit,代碼行數:24,代碼來源:resample.py

示例5: __call__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def __call__(self, seq):
        if np.random.randint(2):
            return seq
        else:
            seq_aug = np.zeros(seq.shape)
            len = seq.shape[1]
            length = int(len * (1 + (random.random()-0.5)*self.sigma))
            for i in range(seq.shape[0]):
                y = resample(seq[i, :], length)
                if length < len:
                    if random.random() < 0.5:
                        seq_aug[i, :length] = y
                    else:
                        seq_aug[i, len-length:] = y
                else:
                    if random.random() < 0.5:
                        seq_aug[i, :] = y[:len]
                    else:
                        seq_aug[i, :] = y[length-len:]
            return seq_aug 
開發者ID:ZhaoZhibin,項目名稱:UDTL,代碼行數:22,代碼來源:sequence_aug.py

示例6: cutTabs

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def cutTabs(datas, part):
	#First we uniformize the GS
	minSize = 0
	for nDim in range(len(v.eName)):
		for s in part :
			if (minSize > len(datas['gs'+s][nDim]) or minSize == 0):
				minSize = len(datas['gs'+s][nDim])
	oneF = int(minSize/9)
	#We cut all tab to reach this size
	for nDim in range(len(v.eName)):
		for s in part :
			#Gold Standard Tab
			datas['gs'+s][nDim] = cutTab(datas['gs'+s][nDim],minSize)
			#Predictions tab
			for nMod in range(len(v.desc)):
				datas[s][nDim][nMod] = cutTab(datas[s][nDim][nMod],minSize)
	return datas
#End cutTabs

#Used to resample the tab 
開發者ID:AudioVisualEmotionChallenge,項目名稱:AVEC2018,代碼行數:22,代碼來源:PredUtils.py

示例7: downsample

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def downsample(data, oldFS, newFS):
    """
    Resample data from oldFS to newFS using the scipy 'resample' function.

    Parameters
    ----------
    data : instance of pandas.core.DataFrame
        Data to resample.
    oldFS : float
        The sampling frequency of data.
    newFS : float
        The new sampling frequency.

    Returns:

    newData : instance of pandas.DataFrame
        The downsampled dataset.
    """

    newNumSamples = int((data.shape[0] / oldFS) * newFS)
    newData = pd.DataFrame(resample(data, newNumSamples))
    return newData 
開發者ID:hadrienj,項目名稱:EEG,代碼行數:24,代碼來源:eeg.py

示例8: downsampleNP

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def downsampleNP(data, oldFS, newFS):
    """
    Resample data from oldFS to newFS using the scipy 'resample' function.

    Parameters
    ----------
    data : array-like
        Data to resample.
    oldFS : float
        The sampling frequency of data.
    newFS : float
        The new sampling frequency.

    Returns:

    newData : instance of pandas.DataFrame
        The downsampled dataset.
    """

    newNumSamples = int((data.shape[0] / oldFS) * newFS)
    newData = resample(data, newNumSamples)
    return newData 
開發者ID:hadrienj,項目名稱:EEG,代碼行數:24,代碼來源:eeg.py

示例9: preprocess

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def preprocess(data, config):
    sr = config.sample_rate
    if sr == None:
      sr = 300
    data = np.nan_to_num(data) # removing NaNs and Infs
    from scipy.signal import resample
    data = resample(data, int(len(data) * 360 / sr) ) # resample to match the data sampling rate 360(mit), 300(cinc)
    from sklearn import preprocessing
    data = preprocessing.scale(data)
    from scipy.signal import find_peaks
    peaks, _ = find_peaks(data, distance=150)
    data = data.reshape(1,len(data))
    data = np.expand_dims(data, axis=2) # required by Keras
    return data, peaks

# predict 
開發者ID:physhik,項目名稱:ecg-mit-bih,代碼行數:18,代碼來源:utils.py

示例10: f0transform

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def f0transform(self, x, completion=False):
        """Transform F0 of given waveform signals using

        Parameters
        ---------
        x : array, shape ('len(x)')
            array of waveform sequence

        completion : bool, optional
        Completion of high frequency range of F0 transformed wavform based on
        unvoiced analysis/synthesis voice of given voice and high-pass filter.
        This is due to loose the high frequency range caused by resampling
        when F0ratio setting to smaller than 1.0.

        Returns
        ---------
        transformed : array, shape (`len(x)`)
            Array of F0 transformed waveform sequence

        """

        self.xlen = len(x)

        # WSOLA
        wsolaed = self.wsola.duration_modification(x)

        # resampling
        transformed = resample(wsolaed, self.xlen)

        # Frequency completion when decrease F0 of wavform
        if completion:
            if self.f0rate > 1.0:
                raise ValueError("Do not enable completion if f0rate > 1.")
            transformed = self._high_frequency_completion(x, transformed)

        return transformed 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:38,代碼來源:shifter.py

示例11: __call__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def __call__(self, pkg):
        pkg = format_package(pkg)
        wav = pkg['chunk']
        wav = wav.data.numpy().reshape(-1).astype(np.float32)
        warp_factor = random.random() * (self.factor_range[1] - \
                                         self.factor_range[0]) + \
                      self.factor_range[0]
        samp_warp = wav.shape[0] + int(warp_factor * wav.shape[0])
        rwav = signal.resample(wav, samp_warp)
        if len(rwav) > len(wav):
            mid_i = (len(rwav) // 2) - len(wav) // 2
            rwav = rwav[mid_i:mid_i + len(wav)]
        if len(rwav) < len(wav):
            diff = len(wav) - len(rwav)
            P = (len(wav) - len(rwav)) // 2
            if diff % 2 == 0:
                rwav = np.concatenate((np.zeros(P, ),
                                       wav,
                                       np.zeros(P, )),
                                      axis=0)
            else:
                rwav = np.concatenate((np.zeros(P, ),
                                       wav,
                                       np.zeros(P + 1, )),
                                      axis=0)
        if self.report:
            if 'report' not in pkg:
                pkg['report'] = {}
            pkg['report']['warp_factor'] = warp_factor
        pkg['chunk'] = torch.FloatTensor(rwav)
        return pkg 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:33,代碼來源:transforms.py

示例12: test_array_as_window

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def test_array_as_window(self):
        # github issue 3603
        osfactor = 128
        sig = np.arange(128)

        win = windows.get_window(('kaiser', 8.0), osfactor // 2)
        assert_raises(ValueError, resample,
                      (sig, len(sig) * osfactor), {'window': win}) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:10,代碼來源:test_windows.py

示例13: resample_dataset

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def resample_dataset(x, rate):
    new_x = np.zeros(shape=(x.shape[0], rate))
    from scipy import signal
    for i in range(x.shape[0]):
        f = signal.resample(x[0], rate)
        new_x[i] = f
    return new_x 
開發者ID:hfawaz,項目名稱:InceptionTime,代碼行數:9,代碼來源:utils.py

示例14: resample

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def resample(sig, target_point_num=None):
    '''
    對原始信號進行重采樣
    :param sig: 原始信號
    :param target_point_num:目標型號點數
    :return: 重采樣的信號
    '''
    sig = signal.resample(sig, target_point_num) if target_point_num else sig
    return sig 
開發者ID:JavisPeng,項目名稱:ecg_pytorch,代碼行數:11,代碼來源:dataset.py

示例15: transform

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import resample [as 別名]
def transform(sig, train=False):
    # 前置不可或缺的步驟
    sig = resample(sig, config.target_point_num)
    # # 數據增強
    if train:
        if np.random.randn() > 0.5: sig = scaling(sig)
        if np.random.randn() > 0.5: sig = verflip(sig)
        if np.random.randn() > 0.5: sig = shift(sig)
    # 後置不可或缺的步驟
    sig = sig.transpose()
    sig = torch.tensor(sig.copy(), dtype=torch.float)
    return sig 
開發者ID:JavisPeng,項目名稱:ecg_pytorch,代碼行數:14,代碼來源:dataset.py


注:本文中的scipy.signal.resample方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。