當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.medfilt方法代碼示例

本文整理匯總了Python中scipy.signal.medfilt方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.medfilt方法的具體用法?Python signal.medfilt怎麽用?Python signal.medfilt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.medfilt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_basic

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def test_basic(self):
        f = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46],
             [50, 50, 50, 50, 50, 0, 72, 77, 68, 66],
             [50, 50, 50, 50, 50, 46, 47, 19, 64, 77],
             [50, 50, 50, 50, 50, 42, 15, 29, 95, 35],
             [50, 50, 50, 50, 50, 46, 34, 9, 21, 66],
             [70, 97, 28, 68, 78, 77, 61, 58, 71, 42],
             [64, 53, 44, 29, 68, 32, 19, 68, 24, 84],
             [3, 33, 53, 67, 1, 78, 74, 55, 12, 83],
             [7, 11, 46, 70, 60, 47, 24, 43, 61, 26],
             [32, 61, 88, 7, 39, 4, 92, 64, 45, 61]]

        d = signal.medfilt(f, [7, 3])
        e = signal.medfilt2d(np.array(f, np.float), [7, 3])
        assert_array_equal(d, [[0, 50, 50, 50, 42, 15, 15, 18, 27, 0],
                               [0, 50, 50, 50, 50, 42, 19, 21, 29, 0],
                               [50, 50, 50, 50, 50, 47, 34, 34, 46, 35],
                               [50, 50, 50, 50, 50, 50, 42, 47, 64, 42],
                               [50, 50, 50, 50, 50, 50, 46, 55, 64, 35],
                               [33, 50, 50, 50, 50, 47, 46, 43, 55, 26],
                               [32, 50, 50, 50, 50, 47, 46, 45, 55, 26],
                               [7, 46, 50, 50, 47, 46, 46, 43, 45, 21],
                               [0, 32, 33, 39, 32, 32, 43, 43, 43, 0],
                               [0, 7, 11, 7, 4, 4, 19, 19, 24, 0]])
        assert_array_equal(d, e) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:27,代碼來源:test_signaltools.py

示例2: find_angle_graph

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def find_angle_graph(velocity, vertical_velocity, interp=False):
    angle = []

    for i in range(len(velocity)):
        if velocity[i] == 0:
            angle.append(angle[-1])
        else:
            ratio = max(-1, min(vertical_velocity[i] / velocity[i], 1))
            angle.append(asin(ratio))

    angle = savgol_filter(angle, 5, 1)

    if interp:
        angle = savgol_filter(angle, 11, 1)
        return ss.medfilt(angle, kernel_size=7)

    return angle 
開發者ID:shahar603,項目名稱:SpaceXtract,代碼行數:19,代碼來源:analyse_raw_telemetry.py

示例3: compute_medfilt

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def compute_medfilt(arr):
    """Median filtered signal as features.

    Parameters
    ----------
    arr : ndarray, shape (n_channels, n_times)

    Returns
    -------
    output : (n_channels * n_times,)
    """
    return medfilt(arr, kernel_size=(1, 5)).ravel()


###############################################################################
# Prepare for the classification task
# -----------------------------------
#
# In addition to the new feature function, we also propose to extract the
# mean of the data: 
開發者ID:mne-tools,項目名稱:mne-features,代碼行數:22,代碼來源:plot_user_defined_function.py

示例4: test_basic

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def test_basic(self):
        f = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46],
             [50, 50, 50, 50, 50, 0, 72, 77, 68, 66],
             [50, 50, 50, 50, 50, 46, 47, 19, 64, 77],
             [50, 50, 50, 50, 50, 42, 15, 29, 95, 35],
             [50, 50, 50, 50, 50, 46, 34, 9, 21, 66],
             [70, 97, 28, 68, 78, 77, 61, 58, 71, 42],
             [64, 53, 44, 29, 68, 32, 19, 68, 24, 84],
             [3, 33, 53, 67, 1, 78, 74, 55, 12, 83],
             [7, 11, 46, 70, 60, 47, 24, 43, 61, 26],
             [32, 61, 88, 7, 39, 4, 92, 64, 45, 61]]

        d = signal.medfilt(f, [7, 3])
        e = signal.medfilt2d(np.array(f, float), [7, 3])
        assert_array_equal(d, [[0, 50, 50, 50, 42, 15, 15, 18, 27, 0],
                               [0, 50, 50, 50, 50, 42, 19, 21, 29, 0],
                               [50, 50, 50, 50, 50, 47, 34, 34, 46, 35],
                               [50, 50, 50, 50, 50, 50, 42, 47, 64, 42],
                               [50, 50, 50, 50, 50, 50, 46, 55, 64, 35],
                               [33, 50, 50, 50, 50, 47, 46, 43, 55, 26],
                               [32, 50, 50, 50, 50, 47, 46, 45, 55, 26],
                               [7, 46, 50, 50, 47, 46, 46, 43, 45, 21],
                               [0, 32, 33, 39, 32, 32, 43, 43, 43, 0],
                               [0, 7, 11, 7, 4, 4, 19, 19, 24, 0]])
        assert_array_equal(d, e) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:27,代碼來源:test_signaltools.py

示例5: unmeasure_np

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def unmeasure_np(self, hparams, x_measured_val, theta_val):
        if hparams.unmeasure_type == 'medfilt':
            unmeasure_func = lambda image, mask: signal.medfilt(image)
        elif hparams.unmeasure_type == 'inpaint-telea':
            inpaint_type = cv2.INPAINT_TELEA
            unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
        elif hparams.unmeasure_type == 'inpaint-ns':
            inpaint_type = cv2.INPAINT_NS
            unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
        elif hparams.unmeasure_type == 'inpaint-tv':
            unmeasure_func = measure_utils.get_inpaint_func_tv()
        elif hparams.unmeasure_type == 'blur':
            unmeasure_func = measure_utils.get_blur_func()
        else:
            raise NotImplementedError

        x_unmeasured_val = np.zeros_like(x_measured_val)
        for i in range(x_measured_val.shape[0]):
            x_unmeasured_val[i] = unmeasure_func(x_measured_val[i], theta_val[i])

        return x_unmeasured_val 
開發者ID:AshishBora,項目名稱:ambient-gan,代碼行數:23,代碼來源:measure.py

示例6: circular_filter_1d

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def circular_filter_1d(signal, window_size, kernel='gaussian'):

    """ This function filters circularly the signal inputted with a median filter of inputted size, in this context
    circularly means that the signal is wrapped around and then filtered
    inputs :
        - signal : 1D numpy array
        - window_size : size of the kernel, an int
    outputs :
        - signal_smoothed : 1D numpy array, same size as signal"""

    signal_extended = np.concatenate((signal, signal, signal))  # replicate signal at both ends
    if kernel == 'gaussian':
        signal_extended_smooth = ndimage.gaussian_filter(signal_extended, window_size)  # gaussian
    elif kernel == 'median':
        signal_extended_smooth = medfilt(signal_extended, window_size)  # median filtering
    else:
        raise Exception("Unknow type of kernel")

    signal_smoothed = signal_extended_smooth[len(signal):2*len(signal)]  # truncate back the signal

    return signal_smoothed 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:23,代碼來源:msct_register.py

示例7: transform

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def transform(self,X):
        """Detrend each column of X

        Parameters
        ----------
        X : DataFrame in `traces` structure [n_samples, n_traces]

        Returns
        -------
        Xt : DataFrame in `traces` structure [n_samples, n_traces]
            The detrended data.
        """
        self.fit_params = {}
        X_new = X.copy()
        for col in X.columns:
            tmp_data = X[col].values.astype(np.double)
            mf = medfilt(tmp_data, self.window)
            mf = np.minimum(mf, self.peak_std_threshold * self._robust_std(mf))
            self.fit_params[col] = dict(mf=mf)
            X_new[col] = tmp_data - mf

        return X_new 
開發者ID:AllenInstitute,項目名稱:neuroglia,代碼行數:24,代碼來源:calcium.py

示例8: loadData

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def loadData(log_folder, smooth, bin_size, is_es=False):
    """
    :param log_folder: (str)
    :param smooth: (int) Smoothing method
    :param bin_size: (int)
    :param is_es: (bool)
    :return:
    """
    result, timesteps = loadCsv(log_folder, is_es=is_es)

    if len(result) < bin_size:
        return [None, None]

    x, y = np.array(result)[:, 0], np.array(result)[:, 1]

    if smooth == 1:
        x, y = smoothRewardCurve(x, y)

    if smooth == 2:
        y = medfilt(y, kernel_size=9)

    x, y = fixPoint(x, y, bin_size)
    return [x, y] 
開發者ID:araffin,項目名稱:robotics-rl-srl,代碼行數:25,代碼來源:visualize.py

示例9: smooth_bbox_params

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def smooth_bbox_params(bbox_params, kernel_size=11, sigma=8):
    """
    Applies median filtering and then gaussian filtering to bounding box
    parameters.

    Args:
        bbox_params (Nx3): [cx, cy, scale].
        kernel_size (int): Kernel size for median filtering (must be odd).
        sigma (float): Sigma for gaussian smoothing.

    Returns:
        Smoothed bounding box parameters (Nx3).
    """
    smoothed = np.array([signal.medfilt(param, kernel_size)
                         for param in bbox_params.T]).T
    return np.array([gaussian_filter1d(traj, sigma) for traj in smoothed.T]).T 
開發者ID:akanazawa,項目名稱:human_dynamics,代碼行數:18,代碼來源:smooth_bbox.py

示例10: apply_median_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def apply_median_filter(self, window_size=3):
        if self.mean_signal is None:
            self.x = signal.medfilt(self.x, window_size)
            self.y = signal.medfilt(self.y, window_size)
            self.z = signal.medfilt(self.z, window_size)
        else:
            self.mean_signal = signal.medfilt(self.mean_signal, window_size) 
開發者ID:tonybeltramelli,項目名稱:Deep-Spying,代碼行數:9,代碼來源:Sensor.py

示例11: median_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def median_filter(self) -> None:
        """
        Applies a median filter on the internal 1d signal. Can be useful for cosmic ray correction
        after temporal de-noising

        Returns
        -------
        NoneType
            None
        """

        self._m_data = medfilt(self._m_data, 19) 
開發者ID:PynPoint,項目名稱:PynPoint,代碼行數:14,代碼來源:wavelets.py

示例12: test_none

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def test_none(self):
        # Ticket #1124. Ensure this does not segfault.
        try:
            signal.medfilt(None)
        except:
            pass
        # Expand on this test to avoid a regression with possible contiguous
        # numpy arrays that have odd strides. The stride value below gets
        # us into wrong memory if used (but it does not need to be used)
        dummy = np.arange(10, dtype=np.float64)
        a = dummy[5:6]
        a.strides = 16
        assert_(signal.medfilt(a, 1) == 5.) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_signaltools.py

示例13: test_refcounting

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def test_refcounting(self):
        # Check a refcounting-related crash
        a = Decimal(123)
        x = np.array([a, a], dtype=object)
        if hasattr(sys, 'getrefcount'):
            n = 2 * sys.getrefcount(a)
        else:
            n = 10
        # Shouldn't segfault:
        for j in range(n):
            signal.medfilt(x)
        if hasattr(sys, 'getrefcount'):
            assert_(sys.getrefcount(a) < n)
        assert_equal(x, [a, a]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:16,代碼來源:test_signaltools.py

示例14: load_data

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def load_data(indir, smooth, bin_size):
    datas = []
    infiles = glob.glob(os.path.join(indir, '*.monitor.csv'))

    for inf in infiles:
        with open(inf, 'r') as f:
            f.readline()
            f.readline()
            for line in f:
                tmp = line.split(',')
                t_time = float(tmp[2])
                tmp = [t_time, int(tmp[1]), float(tmp[0])]
                datas.append(tmp)

    datas = sorted(datas, key=lambda d_entry: d_entry[0])
    result = []
    timesteps = 0
    for i in range(len(datas)):
        result.append([timesteps, datas[i][-1]])
        timesteps += datas[i][1]

    if len(result) < bin_size:
        return [None, None]

    x, y = np.array(result)[:, 0], np.array(result)[:, 1]

    if smooth == 1:
        x, y = smooth_reward_curve(x, y)

    if smooth == 2:
        y = medfilt(y, kernel_size=9)

    x, y = fix_point(x, y, bin_size)
    return [x, y] 
開發者ID:montrealrobotics,項目名稱:dal,代碼行數:36,代碼來源:visualize.py

示例15: smooth_bbox_params

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import medfilt [as 別名]
def smooth_bbox_params(bbox_params, kernel_size=11, sigma=8):
    """
    Applies median filtering and then gaussian filtering to bounding box
    parameters.
    Args:
        bbox_params (Nx3): [cx, cy, scale].
        kernel_size (int): Kernel size for median filtering (must be odd).
        sigma (float): Sigma for gaussian smoothing.
    Returns:
        Smoothed bounding box parameters (Nx3).
    """
    smoothed = np.array([signal.medfilt(param, kernel_size)
                         for param in bbox_params.T]).T
    return np.array([gaussian_filter1d(traj, sigma) for traj in smoothed.T]).T 
開發者ID:jasonyzhang,項目名稱:phd,代碼行數:16,代碼來源:smooth_bbox.py


注:本文中的scipy.signal.medfilt方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。