本文整理匯總了Python中scipy.signal.hilbert方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.hilbert方法的具體用法?Python signal.hilbert怎麽用?Python signal.hilbert使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.hilbert方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: InstantaneousPhase
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def InstantaneousPhase(syn, obs, nt, dt, eps=0.05):
""" Instantaneous phase (from Bozdag et al. 2011, eq 27)
"""
r = _np.real(_analytic(syn))
i = _np.imag(_analytic(syn))
phi_syn = _np.arctan2(i, r)
r = _np.real(_analytic(obs))
i = _np.imag(_analytic(obs))
phi_obs = _np.arctan2(i, r)
phi_rsd = phi_syn - phi_obs
esyn = abs(_analytic(syn))
emax = max(esyn**2.)
wadj = phi_rsd*_np.imag(_analytic(syn))/(esyn**2. + eps*emax) + \
_np.imag(_analytic(phi_rsd * syn/(esyn**2. + eps*emax)))
return wadj
示例2: InstantaneousPhase2
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def InstantaneousPhase2(syn, obs, nt, dt, eps=0.):
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
esyn1 = esyn + eps*max(esyn)
eobs1 = eobs + eps*max(eobs)
esyn3 = esyn**3 + eps*max(esyn**3)
diff1 = syn/(esyn1) - obs/(eobs1)
diff2 = _hilbert(syn)/esyn1 - _hilbert(obs)/eobs1
part1 = diff1*_hilbert(syn)**2/esyn3 - diff2*syn*_hilbert(syn)/esyn3
part2 = diff1*syn*_hilbert(syn)/esyn3 - diff2*syn**2/esyn3
wadj = part1 + _hilbert(part2)
return wadj
# Migration
示例3: SynchronisationIndex
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def SynchronisationIndex(MF1, MF2):
"""
Computes the synchronisation index between two populations given firing data
MF1 and MF2.
"""
if len(MF1) != len(MF2):
raise Exception("Both time series must have the same length")
# Centre time series on zero
MF1 = MF1 - np.mean(MF1)
MF2 = MF2 - np.mean(MF2)
# Calculate phase using Hilbert transform
phase1 = np.angle(hilbert(MF1))
phase2 = np.angle(hilbert(MF2))
# Calculate synchronisation index
phi = np.abs((np.exp(1j*phase1) + np.exp(1j*phase2)) / 2.0)
return np.mean(phi)
示例4: snr
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def snr(data,sampling_rate):
"""
Signal to noise ratio of N cross-correlations.
Follows method of Clarke et. al, 2011. Measures SNR at each point.
"""
data = np.array(data)
N,t = data.shape
data_mean = np.mean(data,axis=0)
# calculate noise and envelope functions
sigma = np.mean(data**2,axis=0) - (data_mean)**2
sigma = np.sqrt(sigma/(N-1.))
s = np.abs(data_mean + 1j*scipy.signal.hilbert(data_mean))
# smooth with 10 second sliding cosine window
# half window length is 5s, i.e. 5 * sampling rate
sigma = smooth(sigma,half_win=int(sampling_rate*5))
s = smooth(s,half_win=int(sampling_rate*5))
return np.real(s/sigma)
示例5: phaseanalysis
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def phaseanalysis(firstharmonic, displayplots=False):
print('entering phaseanalysis')
analytic_signal = hilbert(firstharmonic)
amplitude_envelope = np.abs(analytic_signal)
instantaneous_phase = np.angle(analytic_signal)
if displayplots:
print('making plots')
fig = pl.figure()
ax1 = fig.add_subplot(311)
ax1.set_title('Analytic signal')
X = np.linspace(0.0, 1.0, num=len(firstharmonic))
pl.plot(X, analytic_signal.real, 'k', X, analytic_signal.imag, 'r')
ax2 = fig.add_subplot(312)
ax2.set_title('Phase')
pl.plot(X, instantaneous_phase, 'g')
ax3 = fig.add_subplot(313)
ax3.set_title('Amplitude')
pl.plot(X, amplitude_envelope, 'b')
pl.show()
pl.savefig('phaseanalysistest.jpg')
instantaneous_phase = np.unwrap(instantaneous_phase)
return instantaneous_phase, amplitude_envelope
示例6: pli
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def pli(data, channels_num, window_length):
try:
from scipy.signal import hilbert
if data.shape[0] != channels_num:
data = data.T
data_hil = hilbert(data)
# if data_hil.shape != (channels_num, window_length):
# raise Exception('PLI: Wrong dimentions!')
m = np.zeros((channels_num, channels_num))
for i in range(channels_num):
for j in range(channels_num):
if i < j:
m[i, j] = abs(np.mean(np.sign(np.imag(data_hil[i] / data_hil[j]))))
# m[i, j] = abs(np.mean(np.sign(np.imag(data_hil[:, i] / data_hil[:, j]))))
return m + m.T
except:
print(traceback.format_exc())
return None
示例7: _detect_ready_tone
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def _detect_ready_tone(w, fs):
# get envelope of DC free signal and envelope of BP signal around freq of interest
h = np.abs(signal.hilbert(w - np.median(w)))
fh = np.abs(signal.hilbert(dsp.bp(w, si=1 / fs, b=FTONE * np.array([0.9, 0.95, 1.15, 1.1]))))
dtect = _running_mean(fh / (h + 1e-3), int(fs * 0.1)) > 0.8
return np.where(np.diff(dtect.astype(int)) == 1)[0]
# tone = np.sin(2 * np.pi * FTONE * np.arange(0, fs * 0.1) / fs)
# tone = tone / np.sum(tone ** 2)
# xc = np.abs(signal.hilbert(signal.correlate(w - np.mean(w), tone)))
示例8: hilbert
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def hilbert(w):
return np.imag(analytic(w))
示例9: Envelope
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def Envelope(syn, obs, nt, dt, eps=0.05):
""" Envelope difference (Yuan et al 2015, eq 9)
"""
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
ersd = esyn-eobs
return np.sqrt(np.sum(ersd*ersd*dt))
示例10: InstantaneousPhase
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def InstantaneousPhase(syn, obs, nt, dt, eps=0.05):
""" Instantaneous phase from Bozdag et al. 2011
"""
r = np.real(_analytic(syn))
i = np.imag(_analytic(syn))
phi_syn = np.arctan2(i, r)
r = np.real(_analytic(obs))
i = np.imag(_analytic(obs))
phi_obs = np.arctan2(i, r)
phi_rsd = phi_syn - phi_obs
return np.sqrt(np.sum(phi_rsd*phi_rsd*dt))
示例11: Envelope2
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def Envelope2(syn, obs, nt, dt, eps=0.):
""" Envelope amplitude ratio (Yuan et al 2015, eq B-1)
"""
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
raise NotImplementedError
示例12: Envelope3
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def Envelope3(syn, obs, nt, dt, eps=0.):
""" Envelope cross-correlation lag (Yuan et al 2015, eqs B-4)
"""
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
return Traveltime(esyn, eobs, nt, dt)
示例13: Envelope
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def Envelope(syn, obs, nt, dt, eps=0.05):
""" Envelope difference (Yuan et al 2015, eq 16)
"""
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
etmp = (esyn - eobs)/(esyn + eps*esyn.max())
wadj = etmp*syn - _np.imag(_analytic(etmp*_np.imag(_analytic(syn))))
return wadj
示例14: Envelope3
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def Envelope3(syn, obs, nt, dt, eps=0.):
""" Envelope cross-correlation lag (Yuan et al 2015, eqs B-2, B-5)
"""
esyn = abs(_analytic(syn))
eobs = abs(_analytic(obs))
erat = _np.zeros(nt)
erat[1:-1] = (esyn[2:] - esyn[0:-2])/(2.*dt)
erat[1:-1] /= esyn[1:-1]
erat *= misfit.Envelope3(syn, obs, nt, dt)
wadj = -erat*syn + _hilbert(erat*_hilbert(esyn))
return wadj
示例15: robust_hilbert
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hilbert [as 別名]
def robust_hilbert(sig, increase_n=False):
"""Compute the Hilbert transform, ignoring any boundaries that are NaN.
Parameters
----------
sig : 1d array
Time series.
increase_n : bool, optional, default: False
If True, zero pad the signal to length the next power of 2 for the Hilbert transform.
This is because ``scipy.signal.hilbert`` can be very slow for some signal lengths.
Returns
-------
sig_hilb : 1d array
The Hilbert transform of the input signal.
Examples
--------
Compute a Hilbert transform of a signal, using zero padding:
>>> from neurodsp.sim import sim_combined
>>> sig = sim_combined(n_seconds=10, fs=500,
... components={'sim_powerlaw': {}, 'sim_oscillation': {'freq': 10}})
>>> sig_hilb = robust_hilbert(sig, increase_n=True)
"""
# Extract the signal that is not nan
sig_nonan, sig_nans = remove_nans(sig)
# Compute Hilbert transform of signal without nans
if increase_n:
sig_len = len(sig_nonan)
n_components = 2**(int(np.log2(sig_len)) + 1)
sig_hilb_nonan = hilbert(sig_nonan, n_components)[:sig_len]
else:
sig_hilb_nonan = hilbert(sig_nonan)
# Fill in output hilbert with nans on edges
sig_hilb = restore_nans(sig_hilb_nonan, sig_nans, dtype=complex)
return sig_hilb