當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.hanning方法代碼示例

本文整理匯總了Python中scipy.signal.hanning方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.hanning方法的具體用法?Python signal.hanning怎麽用?Python signal.hanning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.hanning方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: stft

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def stft(X, fftsize=128, mean_normalize=True, compute_onesided=True):
    """
    Compute STFT for 1D input X
    """
    if compute_onesided:
        local_fft = np.fft.rfft
        fftsize = 2 * fftsize
        cut = -1
    else:
        local_fft = np.fft.fft
        cut = None
    if mean_normalize:
        X -= X.mean()
    X = halfoverlap(X, fftsize)
    X = X * np.hanning(X.shape[-1])[None]
    X = local_fft(X)[:, :cut]
    return X 
開發者ID:dagbldr,項目名稱:dagbldr,代碼行數:19,代碼來源:preprocessing_utils.py

示例2: test_smooth

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def test_smooth():
    tr = get_rand_traj()
    assert len(tr.attrs_nstep) > 0
    trs = crys.smooth(tr, hanning(11))
    assert len(trs.attrs_nstep) > 0
    assert_attrs_not_none(trs, attr_lst=tr.attr_lst)
    for name in tr.attrs_nstep:
        a1 = getattr(tr, name)
        a2 = getattr(trs, name)
        assert a1.shape == a2.shape
        assert np.abs(a1 - a2).sum() > 0.0
    assert trs.timestep == tr.timestep
    assert trs.nstep == tr.nstep

    # reproduce data with kernel [0,1,0]
    trs = crys.smooth(tr, hanning(3))
    for name in tr.attrs_nstep:
        a1 = getattr(tr, name)
        a2 = getattr(trs, name)
        assert np.allclose(a1, a2)

    trs1 = crys.smooth(tr, hanning(3), method=1)
    trs2 = crys.smooth(tr, hanning(3), method=2)
    assert len(trs1.attrs_nstep) > 0
    assert len(trs2.attrs_nstep) > 0
    for name in tr.attrs_nstep:
        a1 = getattr(tr, name)
        a2 = getattr(trs1, name)
        a3 = getattr(trs2, name)
        assert np.allclose(a1, a2)
        assert np.allclose(a1, a3)

    trs1 = crys.smooth(tr, hanning(11), method=1)
    trs2 = crys.smooth(tr, hanning(11), method=2)
    assert len(trs1.attrs_nstep) > 0
    assert len(trs2.attrs_nstep) > 0
    for name in trs1.attrs_nstep:
        a1 = getattr(trs1, name)
        a2 = getattr(trs2, name)
        assert np.allclose(a1, a2) 
開發者ID:elcorto,項目名稱:pwtools,代碼行數:42,代碼來源:test_trajectory.py

示例3: ltsd_vad

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def ltsd_vad(x, fs, threshold=9, winsize=8192):
    # winsize based on sample rate
    # 1024 for fs = 16000
    orig_dtype = x.dtype
    orig_scale_min = x.min()
    orig_scale_max = x.max()
    x = (x - x.min()) / (x.max() - x.min())
    # works with 16 bit
    x = x * (2 ** 15)
    x = x.astype("int32")
    window = sp.hanning(winsize)
    ltsd = LTSD(winsize, window, 5)
    s_vad = ltsd.compute(x)
    # LTSD is 50% overlap, so each "step" covers 4096 samples
    # +1 to cover the extra edge window
    n_samples = int(((len(s_vad) + 1) * winsize) // 2)
    time_s = n_samples / float(fs)
    time_points = np.linspace(0, time_s, len(s_vad))
    time_samples = (fs * time_points).astype(np.int32)
    time_samples = time_samples
    f_vad = np.zeros_like(x, dtype=np.bool)
    offset = winsize
    for n, (ss, es) in enumerate(zip(time_samples[:-1], time_samples[1:])):
        sss = ss - offset
        if sss < 0:
            sss = 0
        ses = es - offset
        if ses < 0:
            ses = 0
        if s_vad[n + 1] < threshold:
            f_vad[sss:ses] = False
        else:
            f_vad[sss:ses] = True
    f_vad[ses:] = False
    x = x.astype("float64")
    x = x / float(2 ** 15)
    x = x * (orig_scale_max - orig_scale_min) + orig_scale_min
    x = x.astype(orig_dtype)
    return x[f_vad], f_vad 
開發者ID:kastnerkyle,項目名稱:tools,代碼行數:41,代碼來源:audio_tools.py

示例4: NMREval

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def NMREval(self, xn, xnhat):
        """ Method to perform NMR perceptual evaluation of audio quality between two signals.
        Args        :
            xn      :   (ndarray) 1D Array containing the true time domain signal.
            xnhat   :   (ndarray) 1D Array containing the estimated time domain signal.
        Returns     :
            NMR     :   (float)   A float measurement in dB providing a perceptually weighted
                        evaluation. Below -9 dB can be considered as in-audible difference/error.
        As appears in :
        - K. Brandenburg and T. Sporer,  “NMR and Masking Flag: Evaluation of Quality Using Perceptual Criteria,” in
        Proceedings of the AES 11th International Conference on Test and Measurement, Portland, USA, May 1992, pp. 169–179
        - J. Nikunen and T. Virtanen, "Noise-to-mask ratio minimization by weighted non-negative matrix factorization," in
         Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, Dallas, TX, 2010, pp. 25-28.
        """
        mX, _ = TimeFrequencyDecomposition.STFT(xn, hanning(self.nfft/2 + 1), self.nfft, self.nfft/4)
        mXhat, _ = TimeFrequencyDecomposition.STFT(xnhat, hanning(self.nfft/2 + 1), self.nfft, self.nfft/4)

        # Compute Error
        Err = np.abs(mX - mXhat) ** 2.

        # Acquire Masking Threshold
        mT = self.maskingThreshold(mX)

        # Inverse the filter of masking threshold
        imT = 1./(mT + eps)

        # Outer/Middle Ear transfer function on the diagonal
        LTq = 10 ** (self.MOEar()/20.)

        # NMR computation
        NMR = 10. * np.log10((1./mX.shape[0]) * self._maxb * np.sum((imT * (Err*LTq))))
        print(NMR)
        return NMR 
開發者ID:TUIlmenauAMS,項目名稱:ASP,代碼行數:35,代碼來源:TFMethods.py

示例5: main

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def main(fn, start, end):
    fn = Path(fn).expanduser()
    # rx_array is loading the last 45% of the waveform from the file
    rx_array = load_bin(fn, start, end)
    # peak_array holds the indexes of each peak in the waveform
    # peak_distance is the smallest distance between each peak
    peak_array, peak_distance = get_peaks(rx_array)
    l = peak_distance - 1
    print("using window: ", l, "\n")
    # remove first peak
    peak_array = peak_array[1:]
    Npulse = len(peak_array) - 1
    print(Npulse, "pulses detected")
    wind = signal.hanning(l)
    Ntone = 2
    Nblockest = 160
    fs = 4e6  # [Hz]
    data = np.empty([Npulse, l])
    # set each row of data to window * (first l samples after each peak)
    for i in range(Npulse):
        data[i, :] = wind * rx_array[peak_array[i] : peak_array[i] + l]

    fb_est, sigma = esprit(data, Ntone, Nblockest, fs)
    print("fb_est", fb_est)
    print("sigma: ", sigma)
    drange = (3e8 * fb_est) / (2e6 / 0.1)
    print("range: ", drange, "\n") 
開發者ID:scivision,項目名稱:piradar,代碼行數:29,代碼來源:FMCWteam.py

示例6: sinusoid_analysis

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def sinusoid_analysis(X, input_sample_rate, resample_block=128, copy=True):
    """
    Contruct a sinusoidal model for the input signal.

    Parameters
    ----------
    X : ndarray
        Input signal to model

    input_sample_rate : int
        The sample rate of the input signal

    resample_block : int, optional (default=128)
       Controls the step size of the sinusoidal model

    Returns
    -------
    frequencies_hz : ndarray
       Frequencies for the sinusoids, in Hz.

    magnitudes : ndarray
       Magnitudes of sinusoids returned in ``frequencies``

    References
    ----------
    D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
    Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
    """
    X = np.array(X, copy=copy)
    resample_to = 8000
    if input_sample_rate != resample_to:
        if input_sample_rate % resample_to != 0:
            raise ValueError("Input sample rate must be a multiple of 8k!")
        # Should be able to use resample... ?
        # resampled_count = round(len(X) * resample_to / input_sample_rate)
        # X = sg.resample(X, resampled_count, window=sg.hanning(len(X)))
        X = sg.decimate(X, input_sample_rate // resample_to, zero_phase=True)
    step_size = 2 * round(resample_block / input_sample_rate * resample_to / 2.)
    a, g, e = lpc_analysis(X, order=8, window_step=step_size,
                           window_size=2 * step_size)
    f, m = lpc_to_frequency(a, g)
    f_hz = f * resample_to / (2 * np.pi)
    return f_hz, m 
開發者ID:kastnerkyle,項目名稱:tools,代碼行數:45,代碼來源:audio_tools.py

示例7: sinusoid_analysis

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hanning [as 別名]
def sinusoid_analysis(X, input_sample_rate, resample_block=128, copy=True):
    """
    Contruct a sinusoidal model for the input signal.

    Parameters
    ----------
    X : ndarray
        Input signal to model

    input_sample_rate : int
        The sample rate of the input signal

    resample_block : int, optional (default=128)
       Controls the step size of the sinusoidal model

    Returns
    -------
    frequencies_hz : ndarray
       Frequencies for the sinusoids, in Hz.

    magnitudes : ndarray
       Magnitudes of sinusoids returned in ``frequencies``

    References
    ----------
    D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
    Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
    """
    X = np.array(X, copy=copy)
    resample_to = 8000
    if input_sample_rate != resample_to:
        if input_sample_rate % resample_to != 0:
            raise ValueError("Input sample rate must be a multiple of 8k!")
        # Should be able to use resample... ?
        # resampled_count = round(len(X) * resample_to / input_sample_rate)
        # X = sg.resample(X, resampled_count, window=sg.hanning(len(X)))
        X = sg.decimate(X, input_sample_rate // resample_to)
    step_size = 2 * round(resample_block / input_sample_rate * resample_to / 2.)
    a, g, e = lpc_analysis(X, order=8, window_step=step_size,
                           window_size=2 * step_size)
    f, m = lpc_to_frequency(a, g)
    f_hz = f * resample_to / (2 * np.pi)
    return f_hz, m 
開發者ID:dagbldr,項目名稱:dagbldr,代碼行數:45,代碼來源:audio_tools.py


注:本文中的scipy.signal.hanning方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。