當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.hann方法代碼示例

本文整理匯總了Python中scipy.signal.hann方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.hann方法的具體用法?Python signal.hann怎麽用?Python signal.hann使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.hann方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: STFT

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def STFT(self, x, samplingFreq, framesz, hop):
        """
            Computes STFT for a given sound wave using Hanning window.
        """

        framesamp = int(framesz * samplingFreq)
        print 'FRAMESAMP: ' + str(framesamp)
        hopsamp = int(hop * samplingFreq)
        print 'HOP SAMP: ' + str(hopsamp)
        # Modification: using Hanning window instead of Hamming - by Pertusa
        w = signal.hann(framesamp)
        X = numpy.array([numpy.fft.fft(w * x[i:i + framesamp])
                         for i in range(0, len(x) - framesamp, hopsamp)])
        return X 
開發者ID:Agerrr,項目名稱:Automated_Music_Transcription,代碼行數:16,代碼來源:first_peaks_method.py

示例2: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def __init__(self, target_sz, ):
        init_target_sz = target_sz
        num_scales = config.number_of_scales_filter
        scale_step = config.scale_step_filter
        scale_sigma = config.number_of_interp_scales * config.scale_sigma_factor

        scale_exp = np.arange(-np.floor(num_scales - 1)/2,
                              np.ceil(num_scales-1)/2+1,
                              dtype=np.float32) * config.number_of_interp_scales / num_scales
        scale_exp_shift = np.roll(scale_exp, (0, -int(np.floor((num_scales-1)/2))))

        interp_scale_exp = np.arange(-np.floor((config.number_of_interp_scales-1)/2),
                                     np.ceil((config.number_of_interp_scales-1)/2)+1,
                                     dtype=np.float32)
        interp_scale_exp_shift = np.roll(interp_scale_exp, [0, -int(np.floor(config.number_of_interp_scales-1)/2)])

        self.scale_size_factors = scale_step ** scale_exp
        self.interp_scale_factors = scale_step ** interp_scale_exp_shift

        ys = np.exp(-0.5 * (scale_exp_shift ** 2) / (scale_sigma ** 2))
        self.yf = np.real(fft(ys))[np.newaxis, :]
        self.window = signal.hann(ys.shape[0])[np.newaxis, :].astype(np.float32)

        # make sure the scale model is not to large, to save computation time
        if config.scale_model_factor**2 * np.prod(init_target_sz) > config.scale_model_max_area:
            scale_model_factor = np.sqrt(config.scale_model_max_area / np.prod(init_target_sz))
        else:
            scale_model_factor = config.scale_model_factor

        # set the scale model size
        self.scale_model_sz = np.maximum(np.floor(init_target_sz * scale_model_factor), np.array([8, 8]))
        self.max_scale_dim = config.s_num_compressed_dim == 'MAX'
        if self.max_scale_dim:
            self.s_num_compressed_dim = len(self.scale_size_factors)

        self.num_scales = num_scales
        self.scale_step = scale_step
        self.scale_factors = np.array([1]) 
開發者ID:StrangerZhang,項目名稱:pyECO,代碼行數:40,代碼來源:scale_filter.py

示例3: power_spectrum

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def power_spectrum(signal: np.ndarray,
                   fs: int,
                   window_width: int,
                   window_overlap: int) -> (np.ndarray, np.ndarray, np.ndarray):
    """
    Computes the power spectrum of the specified signal.
    
    A periodic Hann window with the specified width and overlap is used.
    
    Parameters
    ----------
    signal: numpy.ndarray
        The input signal
    fs: int
        Sampling frequency of the input signal
    window_width: int
        Width of the Hann windows in samples
    window_overlap: int
        Overlap between Hann windows in samples

    Returns
    -------
    f: numpy.ndarray
        Array of frequency values for the first axis of the returned spectrogram
    t: numpy.ndarray
        Array of time values for the second axis of the returned spectrogram
    sxx: numpy.ndarray
        Power spectrogram of the input signal with axes [frequency, time]
    """
    f, t, sxx = spectrogram(x=signal,
                            fs=fs,
                            window=hann(window_width, sym=False),
                            noverlap=window_overlap,
                            mode="magnitude")

    return f, t, (1.0 / window_width) * (sxx ** 2) 
開發者ID:auDeep,項目名稱:auDeep,代碼行數:38,代碼來源:spectral.py

示例4: chop

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def chop(signal, hop_size=256, frame_size=512):
    n_hops = len(signal) // hop_size
    frames = []
    hann_win = hann(frame_size)
    for hop_i in range(n_hops):
        frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
        frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
        frame *= hann_win
        frames.append(frame)
    frames = np.array(frames)
    return frames 
開發者ID:pkmital,項目名稱:time-domain-neural-audio-style-transfer,代碼行數:13,代碼來源:utils.py

示例5: chop

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def chop(signal, hop_size=256, frame_size=512):
    n_hops = len(signal) // hop_size
    s = []
    hann_win = hann(frame_size)
    for hop_i in range(n_hops):
        frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
        frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
        frame *= hann_win
        s.append(frame)
    s = np.array(s)
    return s 
開發者ID:pkmital,項目名稱:time-domain-neural-audio-style-transfer,代碼行數:13,代碼來源:timedomain.py

示例6: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def __init__(self, target_sz,config):
        init_target_sz = target_sz
        self.config=config
        num_scales = self.config.number_of_scales_filter
        scale_step = self.config.scale_step_filter
        scale_sigma = self.config.number_of_interp_scales * self.config.scale_sigma_factor

        scale_exp = np.arange(-np.floor(num_scales - 1)/2,
                              np.ceil(num_scales-1)/2+1,
                              dtype=np.float32) * self.config.number_of_interp_scales / num_scales
        scale_exp_shift = np.roll(scale_exp, (0, -int(np.floor((num_scales-1)/2))))

        interp_scale_exp = np.arange(-np.floor((self.config.number_of_interp_scales - 1) / 2),
                                     np.ceil((self.config.number_of_interp_scales - 1) / 2) + 1,
                                     dtype=np.float32)
        interp_scale_exp_shift = np.roll(interp_scale_exp, [0, -int(np.floor(self.config.number_of_interp_scales - 1) / 2)])

        self.scale_size_factors = scale_step ** scale_exp
        self.interp_scale_factors = scale_step ** interp_scale_exp_shift

        ys = np.exp(-0.5 * (scale_exp_shift ** 2) / (scale_sigma ** 2))
        self.yf = np.real(fft(ys))[np.newaxis, :]
        self.window = signal.hann(ys.shape[0])[np.newaxis, :].astype(np.float32)

        # make sure the scale model is not to large, to save computation time
        if self.config.scale_model_factor**2 * np.prod(init_target_sz) > self.config.scale_model_max_area:
            scale_model_factor = np.sqrt(self.config.scale_model_max_area / np.prod(init_target_sz))
        else:
            scale_model_factor = self.config.scale_model_factor

        # set the scale model size
        self.scale_model_sz = np.maximum(np.floor(init_target_sz * scale_model_factor), np.array([8, 8]))
        self.max_scale_dim = self.config.s_num_compressed_dim == 'MAX'
        if self.max_scale_dim:
            self.s_num_compressed_dim = len(self.scale_size_factors)

        self.num_scales = num_scales
        self.scale_step = scale_step
        self.scale_factors = np.array([1]) 
開發者ID:fengyang95,項目名稱:pyCFTrackers,代碼行數:41,代碼來源:scale_filter.py

示例7: apply

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def apply(self, data):
        axis = data.ndim - 1
        out = resample(data, self.f, axis=axis, window=hann(M=data.shape[axis]))
        return out 
開發者ID:MichaelHills,項目名稱:seizure-detection,代碼行數:6,代碼來源:transforms.py

示例8: inverse_stft

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def inverse_stft(stft_mat,
                 frame_len=1024,
                 frame_hop=256,
                 center=False,
                 window="hann",
                 transpose=True,
                 norm=None,
                 power=None,
                 nsamps=None):
    """
    iSTFT wrapper, using librosa
    """
    if transpose:
        stft_mat = np.transpose(stft_mat)
    if window == "sqrthann":
        window = ss.hann(frame_len, sym=False)**0.5
    # orignal istft accept stft result(matrix, shape as FxT)
    samps = librosa.istft(stft_mat,
                          frame_hop,
                          win_length=frame_len,
                          window=window,
                          center=center,
                          length=nsamps)
    # keep same amplitude
    if norm:
        samps_norm = np.linalg.norm(samps, np.inf)
        samps = samps * norm / (samps_norm + EPSILON)
    # keep same power
    if power:
        samps_pow = np.linalg.norm(samps, 2)**2 / samps.size
        samps = samps * np.sqrt(power / samps_pow)
    return samps 
開發者ID:funcwj,項目名稱:setk,代碼行數:34,代碼來源:utils.py

示例9: griffin_lim

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def griffin_lim(mag,
                frame_len=1024,
                frame_hop=256,
                round_power_of_two=True,
                window="hann",
                center=True,
                transpose=True,
                norm=None,
                epoches=30):
    """
    Griffin Lim Algothrim
    """
    # TxF -> FxT
    if transpose:
        mag = np.transpose(mag)
    n_fft = nextpow2(frame_len) if round_power_of_two else frame_len
    stft_kwargs = {
        "hop_length": frame_hop,
        "win_length": frame_len,
        "window": window,
        "center": center
    }
    phase = np.exp(2j * np.pi * np.random.rand(*mag.shape))
    samps = librosa.istft(mag * phase, **stft_kwargs)
    for _ in range(epoches):
        stft_mat = librosa.stft(samps, n_fft=n_fft, **stft_kwargs)
        phase = np.exp(1j * np.angle(stft_mat))
        samps = librosa.istft(mag * phase, **stft_kwargs)
    if norm:
        samps_norm = np.linalg.norm(samps, np.inf)
        samps = samps * norm / (samps_norm + EPSILON)
    return samps 
開發者ID:funcwj,項目名稱:setk,代碼行數:34,代碼來源:utils.py

示例10: stft

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def stft(signal, fs, nfft, overlap):

    #plotting time domain signal
    plt.figure(1)
    t = np.arange(0,len(signal)/fs, 1/fs)
    plt.plot(t,signal)
    plt.axis(xmax = 1)
    plt.xlabel('Time in seconds')
    plt.ylabel('Amplitude')
    plt.title('Speech signal')
    
    if not np.log2(nfft).is_integer():
        nfft = nearestPow2(nfft)
    slength = len(signal)
    hop_size = np.int32(overlap * nfft)
    nFrames = int(np.round(len(signal)/(nfft-hop_size)))
    #zero padding to make signal length long enough to have nFrames
    signal = np.append(signal, np.zeros(nfft))
    STFT = np.empty((nfft, nFrames))
    segment = np.zeros(nfft)
    start = 0
    
    for n in range(nFrames):
        segment = signal[start:start+nfft] * hann(nfft) 
        padded_seg = np.append(segment,np.zeros(nfft))
        spec = fftshift(fft(padded_seg))
        spec = spec[len(spec)/2:]
        spec = abs(spec)/max(abs(spec))
        powerspec = 20*np.log10(spec)
        STFT[:,n] = powerspec
        start = start + nfft - hop_size 
        
    #plot spectrogram
    plt.figure(2)
    freq = (fs/(2*nfft)) * np.arange(0,nfft,1)
    time = np.arange(0,nFrames)*(slength/(fs*nFrames))
    plt.imshow(STFT, extent = [0,max(time),0,max(freq)],origin='lower', cmap='jet', interpolation='nearest', aspect='auto')
    plt.ylabel('Frequency in Hz')
    plt.xlabel('Time in seconds')
    plt.axis([0,max(time),0,np.max(freq)])
    plt.title('Spectrogram of speech')
    plt.show()
    return (STFT, time, freq) 
開發者ID:orchidas,項目名稱:Speaker-Recognition,代碼行數:45,代碼來源:spectrogram.py

示例11: forward_stft

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def forward_stft(samps,
                 frame_len=1024,
                 frame_hop=256,
                 round_power_of_two=True,
                 center=False,
                 window="hann",
                 apply_abs=False,
                 apply_log=False,
                 apply_pow=False,
                 transpose=True):
    """
    STFT wrapper, using librosa
    """
    if apply_log and not apply_abs:
        warnings.warn("Ignore apply_abs=False because apply_log=True")
        apply_abs = True
    if samps.ndim != 1:
        raise RuntimeError("Invalid shape, librosa.stft accepts mono input")
    # pad fft size to power of two or left it same as frame length
    n_fft = nextpow2(frame_len) if round_power_of_two else frame_len
    if window == "sqrthann":
        window = ss.hann(frame_len, sym=False)**0.5
    # orignal stft accept samps(vector) and return matrix shape as F x T
    # NOTE for librosa.stft:
    # 1) win_length <= n_fft
    # 2) if win_length is None, win_length = n_fft
    # 3) if win_length < n_fft, pad window to n_fft
    stft_mat = librosa.stft(samps,
                            n_fft,
                            frame_hop,
                            win_length=frame_len,
                            window=window,
                            center=center)
    # stft_mat: F x T or N x F x T
    if apply_abs:
        stft_mat = cmat_abs(stft_mat)
    if apply_pow:
        stft_mat = np.power(stft_mat, 2)
    if apply_log:
        stft_mat = np.log(np.maximum(stft_mat, EPSILON))
    if transpose:
        stft_mat = np.transpose(stft_mat)
    return stft_mat


# accept F x T or T x F (tranpose=True) 
開發者ID:funcwj,項目名稱:setk,代碼行數:48,代碼來源:utils.py


注:本文中的scipy.signal.hann方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。