本文整理匯總了Python中scipy.signal.hann方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.hann方法的具體用法?Python signal.hann怎麽用?Python signal.hann使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.hann方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: STFT
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def STFT(self, x, samplingFreq, framesz, hop):
"""
Computes STFT for a given sound wave using Hanning window.
"""
framesamp = int(framesz * samplingFreq)
print 'FRAMESAMP: ' + str(framesamp)
hopsamp = int(hop * samplingFreq)
print 'HOP SAMP: ' + str(hopsamp)
# Modification: using Hanning window instead of Hamming - by Pertusa
w = signal.hann(framesamp)
X = numpy.array([numpy.fft.fft(w * x[i:i + framesamp])
for i in range(0, len(x) - framesamp, hopsamp)])
return X
示例2: __init__
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def __init__(self, target_sz, ):
init_target_sz = target_sz
num_scales = config.number_of_scales_filter
scale_step = config.scale_step_filter
scale_sigma = config.number_of_interp_scales * config.scale_sigma_factor
scale_exp = np.arange(-np.floor(num_scales - 1)/2,
np.ceil(num_scales-1)/2+1,
dtype=np.float32) * config.number_of_interp_scales / num_scales
scale_exp_shift = np.roll(scale_exp, (0, -int(np.floor((num_scales-1)/2))))
interp_scale_exp = np.arange(-np.floor((config.number_of_interp_scales-1)/2),
np.ceil((config.number_of_interp_scales-1)/2)+1,
dtype=np.float32)
interp_scale_exp_shift = np.roll(interp_scale_exp, [0, -int(np.floor(config.number_of_interp_scales-1)/2)])
self.scale_size_factors = scale_step ** scale_exp
self.interp_scale_factors = scale_step ** interp_scale_exp_shift
ys = np.exp(-0.5 * (scale_exp_shift ** 2) / (scale_sigma ** 2))
self.yf = np.real(fft(ys))[np.newaxis, :]
self.window = signal.hann(ys.shape[0])[np.newaxis, :].astype(np.float32)
# make sure the scale model is not to large, to save computation time
if config.scale_model_factor**2 * np.prod(init_target_sz) > config.scale_model_max_area:
scale_model_factor = np.sqrt(config.scale_model_max_area / np.prod(init_target_sz))
else:
scale_model_factor = config.scale_model_factor
# set the scale model size
self.scale_model_sz = np.maximum(np.floor(init_target_sz * scale_model_factor), np.array([8, 8]))
self.max_scale_dim = config.s_num_compressed_dim == 'MAX'
if self.max_scale_dim:
self.s_num_compressed_dim = len(self.scale_size_factors)
self.num_scales = num_scales
self.scale_step = scale_step
self.scale_factors = np.array([1])
示例3: power_spectrum
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def power_spectrum(signal: np.ndarray,
fs: int,
window_width: int,
window_overlap: int) -> (np.ndarray, np.ndarray, np.ndarray):
"""
Computes the power spectrum of the specified signal.
A periodic Hann window with the specified width and overlap is used.
Parameters
----------
signal: numpy.ndarray
The input signal
fs: int
Sampling frequency of the input signal
window_width: int
Width of the Hann windows in samples
window_overlap: int
Overlap between Hann windows in samples
Returns
-------
f: numpy.ndarray
Array of frequency values for the first axis of the returned spectrogram
t: numpy.ndarray
Array of time values for the second axis of the returned spectrogram
sxx: numpy.ndarray
Power spectrogram of the input signal with axes [frequency, time]
"""
f, t, sxx = spectrogram(x=signal,
fs=fs,
window=hann(window_width, sym=False),
noverlap=window_overlap,
mode="magnitude")
return f, t, (1.0 / window_width) * (sxx ** 2)
示例4: chop
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def chop(signal, hop_size=256, frame_size=512):
n_hops = len(signal) // hop_size
frames = []
hann_win = hann(frame_size)
for hop_i in range(n_hops):
frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
frame *= hann_win
frames.append(frame)
frames = np.array(frames)
return frames
示例5: chop
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def chop(signal, hop_size=256, frame_size=512):
n_hops = len(signal) // hop_size
s = []
hann_win = hann(frame_size)
for hop_i in range(n_hops):
frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
frame *= hann_win
s.append(frame)
s = np.array(s)
return s
示例6: __init__
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def __init__(self, target_sz,config):
init_target_sz = target_sz
self.config=config
num_scales = self.config.number_of_scales_filter
scale_step = self.config.scale_step_filter
scale_sigma = self.config.number_of_interp_scales * self.config.scale_sigma_factor
scale_exp = np.arange(-np.floor(num_scales - 1)/2,
np.ceil(num_scales-1)/2+1,
dtype=np.float32) * self.config.number_of_interp_scales / num_scales
scale_exp_shift = np.roll(scale_exp, (0, -int(np.floor((num_scales-1)/2))))
interp_scale_exp = np.arange(-np.floor((self.config.number_of_interp_scales - 1) / 2),
np.ceil((self.config.number_of_interp_scales - 1) / 2) + 1,
dtype=np.float32)
interp_scale_exp_shift = np.roll(interp_scale_exp, [0, -int(np.floor(self.config.number_of_interp_scales - 1) / 2)])
self.scale_size_factors = scale_step ** scale_exp
self.interp_scale_factors = scale_step ** interp_scale_exp_shift
ys = np.exp(-0.5 * (scale_exp_shift ** 2) / (scale_sigma ** 2))
self.yf = np.real(fft(ys))[np.newaxis, :]
self.window = signal.hann(ys.shape[0])[np.newaxis, :].astype(np.float32)
# make sure the scale model is not to large, to save computation time
if self.config.scale_model_factor**2 * np.prod(init_target_sz) > self.config.scale_model_max_area:
scale_model_factor = np.sqrt(self.config.scale_model_max_area / np.prod(init_target_sz))
else:
scale_model_factor = self.config.scale_model_factor
# set the scale model size
self.scale_model_sz = np.maximum(np.floor(init_target_sz * scale_model_factor), np.array([8, 8]))
self.max_scale_dim = self.config.s_num_compressed_dim == 'MAX'
if self.max_scale_dim:
self.s_num_compressed_dim = len(self.scale_size_factors)
self.num_scales = num_scales
self.scale_step = scale_step
self.scale_factors = np.array([1])
示例7: apply
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def apply(self, data):
axis = data.ndim - 1
out = resample(data, self.f, axis=axis, window=hann(M=data.shape[axis]))
return out
示例8: inverse_stft
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def inverse_stft(stft_mat,
frame_len=1024,
frame_hop=256,
center=False,
window="hann",
transpose=True,
norm=None,
power=None,
nsamps=None):
"""
iSTFT wrapper, using librosa
"""
if transpose:
stft_mat = np.transpose(stft_mat)
if window == "sqrthann":
window = ss.hann(frame_len, sym=False)**0.5
# orignal istft accept stft result(matrix, shape as FxT)
samps = librosa.istft(stft_mat,
frame_hop,
win_length=frame_len,
window=window,
center=center,
length=nsamps)
# keep same amplitude
if norm:
samps_norm = np.linalg.norm(samps, np.inf)
samps = samps * norm / (samps_norm + EPSILON)
# keep same power
if power:
samps_pow = np.linalg.norm(samps, 2)**2 / samps.size
samps = samps * np.sqrt(power / samps_pow)
return samps
示例9: griffin_lim
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def griffin_lim(mag,
frame_len=1024,
frame_hop=256,
round_power_of_two=True,
window="hann",
center=True,
transpose=True,
norm=None,
epoches=30):
"""
Griffin Lim Algothrim
"""
# TxF -> FxT
if transpose:
mag = np.transpose(mag)
n_fft = nextpow2(frame_len) if round_power_of_two else frame_len
stft_kwargs = {
"hop_length": frame_hop,
"win_length": frame_len,
"window": window,
"center": center
}
phase = np.exp(2j * np.pi * np.random.rand(*mag.shape))
samps = librosa.istft(mag * phase, **stft_kwargs)
for _ in range(epoches):
stft_mat = librosa.stft(samps, n_fft=n_fft, **stft_kwargs)
phase = np.exp(1j * np.angle(stft_mat))
samps = librosa.istft(mag * phase, **stft_kwargs)
if norm:
samps_norm = np.linalg.norm(samps, np.inf)
samps = samps * norm / (samps_norm + EPSILON)
return samps
示例10: stft
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def stft(signal, fs, nfft, overlap):
#plotting time domain signal
plt.figure(1)
t = np.arange(0,len(signal)/fs, 1/fs)
plt.plot(t,signal)
plt.axis(xmax = 1)
plt.xlabel('Time in seconds')
plt.ylabel('Amplitude')
plt.title('Speech signal')
if not np.log2(nfft).is_integer():
nfft = nearestPow2(nfft)
slength = len(signal)
hop_size = np.int32(overlap * nfft)
nFrames = int(np.round(len(signal)/(nfft-hop_size)))
#zero padding to make signal length long enough to have nFrames
signal = np.append(signal, np.zeros(nfft))
STFT = np.empty((nfft, nFrames))
segment = np.zeros(nfft)
start = 0
for n in range(nFrames):
segment = signal[start:start+nfft] * hann(nfft)
padded_seg = np.append(segment,np.zeros(nfft))
spec = fftshift(fft(padded_seg))
spec = spec[len(spec)/2:]
spec = abs(spec)/max(abs(spec))
powerspec = 20*np.log10(spec)
STFT[:,n] = powerspec
start = start + nfft - hop_size
#plot spectrogram
plt.figure(2)
freq = (fs/(2*nfft)) * np.arange(0,nfft,1)
time = np.arange(0,nFrames)*(slength/(fs*nFrames))
plt.imshow(STFT, extent = [0,max(time),0,max(freq)],origin='lower', cmap='jet', interpolation='nearest', aspect='auto')
plt.ylabel('Frequency in Hz')
plt.xlabel('Time in seconds')
plt.axis([0,max(time),0,np.max(freq)])
plt.title('Spectrogram of speech')
plt.show()
return (STFT, time, freq)
示例11: forward_stft
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hann [as 別名]
def forward_stft(samps,
frame_len=1024,
frame_hop=256,
round_power_of_two=True,
center=False,
window="hann",
apply_abs=False,
apply_log=False,
apply_pow=False,
transpose=True):
"""
STFT wrapper, using librosa
"""
if apply_log and not apply_abs:
warnings.warn("Ignore apply_abs=False because apply_log=True")
apply_abs = True
if samps.ndim != 1:
raise RuntimeError("Invalid shape, librosa.stft accepts mono input")
# pad fft size to power of two or left it same as frame length
n_fft = nextpow2(frame_len) if round_power_of_two else frame_len
if window == "sqrthann":
window = ss.hann(frame_len, sym=False)**0.5
# orignal stft accept samps(vector) and return matrix shape as F x T
# NOTE for librosa.stft:
# 1) win_length <= n_fft
# 2) if win_length is None, win_length = n_fft
# 3) if win_length < n_fft, pad window to n_fft
stft_mat = librosa.stft(samps,
n_fft,
frame_hop,
win_length=frame_len,
window=window,
center=center)
# stft_mat: F x T or N x F x T
if apply_abs:
stft_mat = cmat_abs(stft_mat)
if apply_pow:
stft_mat = np.power(stft_mat, 2)
if apply_log:
stft_mat = np.log(np.maximum(stft_mat, EPSILON))
if transpose:
stft_mat = np.transpose(stft_mat)
return stft_mat
# accept F x T or T x F (tranpose=True)