本文整理匯總了Python中scipy.signal.hamming方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.hamming方法的具體用法?Python signal.hamming怎麽用?Python signal.hamming使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.hamming方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def __init__(self, win_len=0.025, win_step=0.01,
num_filt=40, nfft=512, low_freq=20, high_freq=7800,
pre_emph=0.97, win_fun=signal.hamming, **kwargs):
super(FBank, self).__init__(**kwargs)
if high_freq > self.fs / 2:
raise ValueError("high_freq must be less or equal than fs/2")
self.win_len = win_len
self.win_step = win_step
self.num_filt = num_filt
self.nfft = nfft
self.low_freq = low_freq
self.high_freq = high_freq or self.fs / 2
self.pre_emph = pre_emph
self.win_fun = win_fun
self._filterbanks = self._get_filterbanks()
self._num_feats = self.num_filt
示例2: initialize
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def initialize(self):
f_matrix = np.fft.fft(np.eye(self.sz), norm='ortho')
w = sig.hamming(self.sz)
f_matrix_real = (np.real(f_matrix) * w).astype(np.float32, copy=False)
f_matrix_imag = (np.imag(f_matrix) * w).astype(np.float32, copy=False)
if torch.has_cudnn:
self.conv_analysis_real.weight.data.copy_(torch.from_numpy(f_matrix_real[:, None, :]).cuda())
self.conv_analysis_imag.weight.data.copy_(torch.from_numpy(f_matrix_imag[:, None, :]).cuda())
else:
self.conv_analysis_real.weight.data.copy_(torch.from_numpy(f_matrix_real[:, None, :]))
self.conv_analysis_imag.weight.data.copy_(torch.from_numpy(f_matrix_imag[:, None, :]))
示例3: GLA
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def GLA(wsz, hop, N=4096):
""" LSEE-MSTFT algorithm for computing the synthesis window used in
inverse STFT method.
Args:
wsz : (int) Synthesis window size
hop : (int) Hop size
N : (int) DFT Size
Returns :
symw: (array) Synthesised windowing function
References :
[1] Daniel W. Griffin and Jae S. Lim, ``Signal estimation from modified short-time
Fourier transform,'' IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 32, no. 2, pp. 236-243, Apr 1984.
"""
synw = sig.hamming(wsz)
synwProd = synw ** 2.
synwProd.shape = (wsz, 1)
redundancy = wsz // hop
env = np.zeros((wsz, 1))
for k in range(-redundancy, redundancy + 1):
envInd = (hop * k)
winInd = np.arange(1, wsz + 1)
envInd += winInd
valid = np.where((envInd > 0) & (envInd <= wsz))
envInd = envInd[valid] - 1
winInd = winInd[valid] - 1
env[envInd] += synwProd[winInd]
synw = synw / env[:, 0]
return synw
示例4: normhamming
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def normhamming(fft_len):
win = numpy.sqrt(hamming(fft_len, False))
win = win/numpy.sqrt(numpy.sum(numpy.power(win[0:fft_len:FRAME_SHIFT],2)))
return win
示例5: _gl_alg
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def _gl_alg(window_size, hop, fft_size=4096):
"""LSEE-MSTFT algorithm for computing the synthesis window.
According to: Daniel W. Griffin and Jae S. Lim, `Signal estimation\
from modified short-time Fourier transform,` IEEE Transactions on\
Acoustics, Speech and Signal Processing, vol. 32, no. 2, pp. 236-243,\
Apr 1984.
:param window_size: Synthesis window size in samples.
:type window_size: int
:param hop: Hop size in samples.
:type hop: int
:param fft_size: FTT size
:type fft_size: int
:return: The synthesized window
:rtype: numpy.core.multiarray.ndarray
"""
syn_w = signal.hamming(window_size) / np.sqrt(fft_size)
syn_w_prod = syn_w ** 2.
syn_w_prod.shape = (window_size, 1)
redundancy = int(window_size / hop)
env = np.zeros((window_size, 1))
for k in range(-redundancy, redundancy + 1):
env_ind = (hop * k)
win_ind = np.arange(1, window_size + 1)
env_ind += win_ind
valid = np.where((env_ind > 0) & (env_ind <= window_size))
env_ind = env_ind[valid] - 1
win_ind = win_ind[valid] - 1
env[env_ind] += syn_w_prod[win_ind]
syn_w = syn_w / env[:, 0]
return syn_w
示例6: GLA
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def GLA(wsz, hop):
""" LSEE-MSTFT algorithm for computing the synthesis window used in
inverse STFT method below.
Args:
wsz : (int) Synthesis Window size
hop : (int) Hop size
Returns :
symw: (array) Synthesised time-domain real signal.
References :
[1] Daniel W. Griffin and Jae S. Lim, ``Signal estimation from modified short-time
Fourier transform,'' IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. 32, no. 2, pp. 236-243, Apr 1984.
"""
synw = hamming(wsz)/np.sum(hamming(wsz))
synwProd = synw ** 2.
synwProd.shape = (wsz, 1)
redundancy = wsz/hop
env = np.zeros((wsz, 1))
for k in xrange(-redundancy, redundancy + 1):
envInd = (hop*k)
winInd = np.arange(1, wsz+1)
envInd += winInd
valid = np.where((envInd > 0) & (envInd <= wsz))
envInd = envInd[valid] - 1
winInd = winInd[valid] - 1
env[envInd] += synwProd[winInd]
synw = synw/env[:, 0]
return synw
示例7: mfcc
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def mfcc(s,fs, nfiltbank):
#divide into segments of 25 ms with overlap of 10ms
nSamples = np.int32(0.025*fs)
overlap = np.int32(0.01*fs)
nFrames = np.int32(np.ceil(len(s)/(nSamples-overlap)))
#zero padding to make signal length long enough to have nFrames
padding = ((nSamples-overlap)*nFrames) - len(s)
if padding > 0:
signal = np.append(s, np.zeros(padding))
else:
signal = s
segment = np.empty((nSamples, nFrames))
start = 0
for i in range(nFrames):
segment[:,i] = signal[start:start+nSamples]
start = (nSamples-overlap)*i
#compute periodogram
nfft = 512
periodogram = np.empty((nFrames, int(nfft/2 + 1)))
for i in range(nFrames):
x = segment[:,i] * hamming(nSamples)
spectrum = fftshift(fft(x,nfft))
periodogram[i,:] = abs(spectrum[int(nfft/2-1):])/nSamples
#calculating mfccs
fbank = mel_filterbank(nfft, nfiltbank, fs)
#nfiltbank MFCCs for each frame
mel_coeff = np.empty((nfiltbank,nFrames))
for i in range(nfiltbank):
for k in range(nFrames):
mel_coeff[i,k] = np.sum(periodogram[k,:]*fbank[:,i])
mel_coeff = np.log10(mel_coeff)
mel_coeff = dct(mel_coeff)
#exclude 0th order coefficient (much larger than others)
mel_coeff[0,:]= np.zeros(nFrames)
return mel_coeff
示例8: data_feeder_testing
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import hamming [as 別名]
def data_feeder_testing(window_size, fft_size, hop_size, seq_length, context_length,
batch_size, debug, sources_list=None):
"""Provides an iterator over the testing examples.
:param window_size: The window size to be used for the time-frequency transformation.
:type window_size: int
:param fft_size: The size of the FFT in samples.
:type fft_size: int
:param hop_size: The hop size in samples.
:type hop_size: int
:param seq_length: The sequence length in frames.
:type seq_length: int
:param context_length: The context length in frames.
:type context_length: int
:param batch_size: The batch size.
:type batch_size: int
:param debug: A flag to indicate debug
:type debug: bool
:param sources_list: The file list provided for using the MaD-TwinNet.
:type sources_list: list[str]
:return: An iterator that will provide the input and target values.\
The iterator yields (mix, mix magnitude, mix phase, voice true, bg true) values.
:rtype: callable
"""
if sources_list is None:
usage_case = False
sources_list = _get_files_lists('testing')[-1]
else:
usage_case = True
hamming_window = signal.hamming(window_size, True)
def testing_it():
for index in range(len(sources_list)):
yield _get_data_testing(
sources_parent_path=sources_list[index],
window_values=hamming_window, fft_size=fft_size, hop=hop_size,
seq_length=seq_length, context_length=context_length,
batch_size=batch_size, usage_case=usage_case
)
if debug:
break
return testing_it