當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.gaussian方法代碼示例

本文整理匯總了Python中scipy.signal.gaussian方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.gaussian方法的具體用法?Python signal.gaussian怎麽用?Python signal.gaussian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.gaussian方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: preprocess

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def preprocess(data, smoothing_sd=25, n_pcs=20):
    """
    Preprocess neural data for cca analysis with smoothing and pca

    :param data: array of shape (n_samples, n_features)
    :type data: array-like
    :param smoothing_sd: gaussian smoothing kernel standard deviation (ms)
    :type smoothing_sd: float
    :param n_pcs: number of pca dimensions to retain
    :type n_pcs: int
    :return: preprocessed neural data
    :rtype: array-like, shape (n_samples, pca_dims)
    """
    if smoothing_sd > 0:
        data = _smooth(data, sd=smoothing_sd)
    if n_pcs > 0:
        data = _pca(data, n_pcs=n_pcs)
    return data 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:20,代碼來源:cca.py

示例2: test_smooth_1d

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def test_smooth_1d():
    for edge in ['m', 'c']:
        for N in [20,21]:
            # values in [9.0,11.0]
            x = rand(N) + 10
            mn = 9.0
            mx = 11.0
            for M in range(18,27):
                print("1d", edge, "N=%i, M=%i" %(N,M))
                xsm = smooth(x, gaussian(M,2.0), edge=edge)
                assert len(xsm) == N
                # (N,1) case
                xsm2 = smooth(x[:,None], gaussian(M,2.0)[:,None], edge=edge)
                assert np.allclose(xsm, xsm2[:,0], atol=1e-14, rtol=1e-12)
                # Smoothed signal should not go to zero if edge effects are handled
                # properly. Also assert proper normalization (i.e. smoothed signal
                # is "in the middle" of the noisy original data).
                assert xsm.min() >= mn
                assert xsm.max() <= mx
                assert mn <= xsm[0] <= mx
                assert mn <= xsm[-1] <= mx
            # convolution with delta peak produces same data exactly
            assert np.allclose(smooth(x, np.array([0.0,1,0]), edge=edge),x, atol=1e-14,
                               rtol=1e-12) 
開發者ID:elcorto,項目名稱:pwtools,代碼行數:26,代碼來源:test_signal.py

示例3: test_smooth_nd

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def test_smooth_nd():
    for edge in ['m', 'c']:
        a = rand(20, 2, 3) + 10
        for M in [5, 20, 123]:
            print("nd", edge, "M=%i" %M)
            kern = gaussian(M, 2.0)
            asm = smooth(a, kern[:,None,None], axis=0, edge=edge)
            assert asm.shape == a.shape
            for jj in range(asm.shape[1]):
                for kk in range(asm.shape[2]):
                    assert np.allclose(asm[:,jj,kk], smooth(a[:,jj,kk], kern,
                                                            edge=edge))
                    mn = a[:,jj,kk].min()
                    mx = a[:,jj,kk].max()
                    smn = asm[:,jj,kk].min()
                    smx = asm[:,jj,kk].max()
                    assert smn >= mn, "min: data=%f, smooth=%f" %(mn, smn)
                    assert smx <= mx, "max: data=%f, smooth=%f" %(mx, smx) 
開發者ID:elcorto,項目名稱:pwtools,代碼行數:20,代碼來源:test_signal.py

示例4: smooth_dir_map

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def smooth_dir_map(dir_map,sigma=2.0,mask = None):

    cos2Theta = np.cos(dir_map * 2)
    sin2Theta = np.sin(dir_map * 2)
    if mask is not None:
        assert (dir_map.shape[0] == mask.shape[0])
        assert (dir_map.shape[1] == mask.shape[1])
        cos2Theta[mask == 0] = 0
        sin2Theta[mask == 0] = 0

    cos2Theta = gaussian(cos2Theta, sigma, multichannel=False, mode='reflect')
    sin2Theta = gaussian(sin2Theta, sigma, multichannel=False, mode='reflect')

    dir_map = np.arctan2(sin2Theta,cos2Theta)*0.5


    return dir_map 
開發者ID:luannd,項目名稱:MinutiaeNet,代碼行數:19,代碼來源:MinutiaeNet_utils.py

示例5: smooth1d

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def smooth1d(array, window_size=None, kernel='gaussian'):
    """Apply a centered window smoothing to a 1D array.

    Parameters
    ----------
    array : ndarray
        the array to apply the smoothing to
    window_size : int
        the size of the smoothing window
    kernel : str
        the type of smoothing (`gaussian`, `mean`)

    Returns
    -------
    the smoothed array (same dim as input)
    """

    # some defaults
    if window_size is None:
        if len(array) >= 9:
            window_size = 9
        elif len(array) >= 7:
            window_size = 7
        elif len(array) >= 5:
            window_size = 5
        elif len(array) >= 3:
            window_size = 3

    if window_size % 2 == 0:
        raise ValueError('Window should be an odd number.')

    if isinstance(kernel, str):
        if kernel == 'gaussian':
            kernel = gaussian(window_size, 1)
        elif kernel == 'mean':
            kernel = np.ones(window_size)
        else:
            raise NotImplementedError('Kernel: ' + kernel)
    kernel = kernel / np.asarray(kernel).sum()
    return filters.convolve1d(array, kernel, mode='mirror') 
開發者ID:OGGM,項目名稱:oggm,代碼行數:42,代碼來源:_funcs.py

示例6: _smooth

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def _smooth(data, sd):
    from scipy.signal import gaussian
    from scipy.signal import convolve
    n_bins = data.shape[0]
    w = n_bins - 1 if n_bins % 2 == 0 else n_bins
    window = gaussian(w, std=sd)
    for j in range(data.shape[1]):
        data[:, j] = convolve(data[:, j], window, mode='same', method='auto')
    return data 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:11,代碼來源:cca.py

示例7: velocity_smoothed

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def velocity_smoothed(pos, freq, smooth_size=0.03):
    """
    Compute wheel velocity from uniformly sampled wheel data

    Parameters
    ----------
    pos : array_like
        Array of wheel positions
    smooth_size : float
        Size of Gaussian smoothing window in seconds
    freq : float
        Sampling frequency of the data

    Returns
    -------
    vel : np.ndarray
        Array of velocity values
    acc : np.ndarray
        Array of acceleration values
    """
    # Define our smoothing window with an area of 1 so the units won't be changed
    stdSamps = np.round(smooth_size * freq)  # Standard deviation relative to sampling frequency
    N = stdSamps * 6  # Number of points in the Gaussian
    gauss_std = (N - 1) / 6  # @fixme magic number everywhere!
    win = gaussian(N, gauss_std)
    win = win / win.sum()  # Normalize amplitude

    # Convolve and multiply by sampling frequency to restore original units
    vel = np.insert(convolve(np.diff(pos), win, mode='same'), 0, 0) * freq
    acc = np.insert(convolve(np.diff(vel), win, mode='same'), 0, 0) * freq

    return vel, acc 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:34,代碼來源:wheel.py

示例8: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def __init__(
            self,
            action_space=(0, 1, 2, 3),
            time_threshold=5,
            pips_threshold=10,
            pips_scale=1e-4,
            kernel_size=5,
            kernel_stddev=1
    ):
        """

        Args:
            action_space:       actions to advice: 0 - hold, 1- buy, 2 - sell, 3 - close
            time_threshold:     how many points (in number of ENVIRONMENT timesteps) on each side to use
                                for the comparison to consider comparator(n, n+x) to be True
            pips_threshold:     int, minimal peaks difference in pips
                                to consider comparator(n, n+x) to be True
            pips_scale:         actual single pip value wrt signal value
            kernel_size:        gaussian convolution kernel size (used to compute distribution over actions)
            kernel_stddev:      gaussian kernel standard deviation
        """
        self.action_space = action_space
        self.time_threshold = time_threshold
        self.value_threshold = pips_threshold * pips_scale
        self.kernel_size = kernel_size
        self.kernel = signal.gaussian(kernel_size, std=kernel_stddev)
        self.data = None 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:29,代碼來源:oracle.py

示例9: fit

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def fit(self, episode_data, resampling_factor=1):
        """
        Estimates `advised` actions probabilities distribution based on data received.

        Args:
            episode_data:           1D np.array of unscaled price values in OHL[CV] format
            resampling_factor:      factor by which to resample given data
                                    by taking min/max values inside every resampled bar

        Returns:
             Np.array of size [resampled_data_size, actions_space_size] of probabilities of advised actions, where
             resampled_data_size = int(len(episode_data) / resampling_factor) + 1/0

        """
        # Vector of advised actions:
        data = self.resample_data(episode_data, resampling_factor)
        signals = self.estimate_actions(data)
        signals = self.adjust_signals(signals)

        # One-hot actions encoding:
        actions_one_hot = np.zeros([signals.shape[0], len(self.action_space)])
        actions_one_hot[np.arange(signals.shape[0]), signals] = 1

        # Want a bit relaxed discrete distribution over actions instead of one hot (heuristic):
        actions_distr = np.zeros(actions_one_hot.shape)

        # For all actions except 'hold' (due to heuristic skewness):
        actions_distr[:, 0] = actions_one_hot[:, 0]

        # ...spread out actions probabilities by convolving with gaussian kernel :
        for channel in range(1, actions_one_hot.shape[-1]):
            actions_distr[:, channel] = np.convolve(actions_one_hot[:, channel], self.kernel, mode='same') + 0.1

        # Normalize:
        actions_distr /= actions_distr.sum(axis=-1)[..., None]

        return actions_distr 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:39,代碼來源:oracle.py

示例10: lorentz

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def lorentz(M, std=1.0, sym=True):
    r"""Lorentz window (same as Cauchy function). Function skeleton stolen from
    scipy.signal.gaussian().

    The Lorentz function is

    .. math::

        L(x) = \frac{\Gamma}{(x-x_0)^2 + \Gamma^2}

    Here :math:`x_0 = 0` and `std` = :math:`\Gamma`.
    Some definitions use :math:`1/2\,\Gamma` instead of :math:`\Gamma`, but
    without 1/2 we get comparable peak width to Gaussians when using this
    window in convolutions, thus ``scipy.signal.gaussian(M, std=5)`` is similar
    to ``lorentz(M, std=5)``.

    Parameters
    ----------
    M : int
        number of points
    std : float
        spread parameter :math:`\Gamma`
    sym : bool

    Returns
    -------
    w : (M,)
    """
    if M < 1:
        return np.array([])
    if M == 1:
        return np.ones(1,dtype=float)
    odd = M % 2
    if not sym and not odd:
        M = M+1
    n = np.arange(0, M) - (M - 1.0) / 2.0
    w = std / (n**2.0 + std**2.0)
    w /= w.max()
    if not sym and not odd:
        w = w[:-1]
    return w 
開發者ID:elcorto,項目名稱:pwtools,代碼行數:43,代碼來源:signal.py

示例11: _generate_noise_temporal_task

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def _generate_noise_temporal_task(stimfunction_tr,
                                  motion_noise='gaussian',
                                  ):
    """Generate the signal dependent noise

    Create noise specific to the signal, for instance there is variability
    in how the signal manifests on each event

    Parameters
    ----------

    stimfunction_tr : 1 Dimensional array
        This is the timecourse of the stimuli in this experiment,
        each element represents a TR

    motion_noise : str
        What type of noise will you generate? Can be gaussian or rician

    Returns
    ----------

    noise_task : one dimensional array, float
        Generates the temporal task noise timecourse

    """

    # Make the noise to be added
    stimfunction_tr = stimfunction_tr != 0
    if motion_noise == 'gaussian':
        noise = stimfunction_tr * np.random.normal(0, 1,
                                                   size=stimfunction_tr.shape)
    elif motion_noise == 'rician':
        noise = stimfunction_tr * stats.rice.rvs(0, 1,
                                                 size=stimfunction_tr.shape)

    noise_task = stimfunction_tr + noise

    # Normalize
    noise_task = stats.zscore(noise_task).flatten()

    return noise_task 
開發者ID:brainiak,項目名稱:brainiak,代碼行數:43,代碼來源:fmrisim.py

示例12: isogkern

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def isogkern(kernlen, std):
    gkern1d = signal.gaussian(kernlen, std=std).reshape(kernlen, 1)
    gkern2d = np.outer(gkern1d, gkern1d)
    gkern2d = gkern2d/np.sum(gkern2d)
    return gkern2d 
開發者ID:yuanjunchai,項目名稱:IKC,代碼行數:7,代碼來源:util.py

示例13: anisogkern

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def anisogkern(kernlen, std1, std2, angle):
    gkern1d_1 = signal.gaussian(kernlen, std=std1).reshape(kernlen, 1)
    gkern1d_2 = signal.gaussian(kernlen, std=std2).reshape(kernlen, 1)
    gkern2d = np.outer(gkern1d_1, gkern1d_2)
    gkern2d = gkern2d/np.sum(gkern2d)
    return gkern2d 
開發者ID:yuanjunchai,項目名稱:IKC,代碼行數:8,代碼來源:util.py

示例14: DUF_downsample

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def DUF_downsample(x, scale=4):
    """Downsamping with Gaussian kernel used in the DUF official code

    Args:
        x (Tensor, [B, T, C, H, W]): frames to be downsampled.
        scale (int): downsampling factor: 2 | 3 | 4.
    """

    assert scale in [2, 3, 4], 'Scale [{}] is not supported'.format(scale)

    def gkern(kernlen=13, nsig=1.6):
        import scipy.ndimage.filters as fi
        inp = np.zeros((kernlen, kernlen))
        # set element at the middle to one, a dirac delta
        inp[kernlen // 2, kernlen // 2] = 1
        # gaussian-smooth the dirac, resulting in a gaussian filter mask
        return fi.gaussian_filter(inp, nsig)

    B, T, C, H, W = x.size()
    x = x.view(-1, 1, H, W)
    pad_w, pad_h = 6 + scale * 2, 6 + scale * 2  # 6 is the pad of the gaussian filter
    r_h, r_w = 0, 0
    if scale == 3:
        r_h = 3 - (H % 3)
        r_w = 3 - (W % 3)
    x = F.pad(x, [pad_w, pad_w + r_w, pad_h, pad_h + r_h], 'reflect')

    gaussian_filter = torch.from_numpy(gkern(13, 0.4 * scale)).type_as(x).unsqueeze(0).unsqueeze(0)
    x = F.conv2d(x, gaussian_filter, stride=scale)
    x = x[:, :, 2:-2, 2:-2]
    x = x.view(B, T, C, x.size(2), x.size(3))
    return x

####################
# metric
#################### 
開發者ID:yuanjunchai,項目名稱:IKC,代碼行數:38,代碼來源:util.py

示例15: compute_gaussian_krnl

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import gaussian [as 別名]
def compute_gaussian_krnl(M):
    """Creates a gaussian kernel following Serra's paper."""
    g = signal.gaussian(M, M / 3., sym=True)
    G = np.dot(g.reshape(-1, 1), g.reshape(1, -1))
    G[M // 2:, :M // 2] = -G[M // 2:, :M // 2]
    G[:M // 2, M // 1:] = -G[:M // 2, M // 1:]
    return G 
開發者ID:urinieto,項目名稱:msaf,代碼行數:9,代碼來源:segmenter.py


注:本文中的scipy.signal.gaussian方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。