本文整理匯總了Python中scipy.signal.freqz方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.freqz方法的具體用法?Python signal.freqz怎麽用?Python signal.freqz使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.freqz方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: freqz_
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def freqz_(sys, w, dt=8e-9):
"""
This function computes the frequency response of a zpk system at an
array of frequencies.
It loosely mimicks 'scipy.signal.frequresp'.
Parameters
----------
system: (zeros, poles, k)
zeros and poles both in rad/s, k is the actual coefficient, not DC gain
w: np.array
frequencies in rad/s
dt: sampling time
Returns
-------
np.array(..., dtype=np.complex) with the response
"""
z, p, k = sys
b, a = sig.zpk2tf(z, p, k)
_, h = sig.freqz(b, a, worN=w*dt)
return h
示例2: lsf2mfbe
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def lsf2mfbe(lsf, mel_filters):
NFFT = 512
M = get_filterbank(n_filters=mel_filters, NFFT=NFFT, normalize=False, htk=True)
mfbe = np.zeros(( len(lsf), mel_filters), dtype=np.float64)
spec = np.zeros((len(lsf), NFFT/2+1,), dtype=np.float64)
x = np.zeros((NFFT,), dtype=np.float64)
x[0] = 1.0
b = np.ones((1,), dtype=np.float64)
for i, lsf_vec in enumerate(lsf):
#convert lsf to filter polynomial
a_poly = lsf2poly(lsf_vec)
# compute power spectrum
w, H = freqz(b=1.0, a=a_poly, worN=NFFT, whole=True)
spec_vec = np.abs(H[:(NFFT/2+1)])
#spec_vec = np.square(spec_vec)
# apply filterbank matrix
mfbe[i,:] = np.log10( np.dot(M,spec_vec) )
spec[i,:] = spec_vec
return mfbe, spec
示例3: test_ticket1441
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def test_ticket1441(self):
"""Regression test for ticket 1441."""
# Because freqz previously used arange instead of linspace,
# when N was large, it would return one more point than
# requested.
N = 100000
w, h = freqz([1.0], worN=N)
assert_equal(w.shape, (N,))
示例4: test_basic
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def test_basic(self):
w, h = freqz([1.0], worN=8)
assert_array_almost_equal(w, np.pi * np.arange(8.0) / 8)
assert_array_almost_equal(h, np.ones(8))
示例5: test_basic_whole
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def test_basic_whole(self):
w, h = freqz([1.0], worN=8, whole=True)
assert_array_almost_equal(w, 2 * np.pi * np.arange(8.0) / 8)
assert_array_almost_equal(h, np.ones(8))
示例6: test_plot
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def test_plot(self):
def plot(w, h):
assert_array_almost_equal(w, np.pi * np.arange(8.0) / 8)
assert_array_almost_equal(h, np.ones(8))
assert_raises(ZeroDivisionError,
freqz, [1.0], worN=8, plot=lambda w, h: 1 / 0)
freqz([1.0], worN=8, plot=plot)
示例7: test_absorption_filter
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def test_absorption_filter(self):
b = uwa.absorption_filter(200000)
w, h = sp.freqz(b, 1, 4)
h = utils.mag2db(np.abs(h))
self.assertEqual(list(np.round(h)), [0.0, -3.0, -11.0, -22.0])
示例8: filter2spectrum
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def filter2spectrum(self, param):
return np.abs(freqz([1], param)[1])
示例9: freqz_cas
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def freqz_cas(sos,w):
"""
Cascade frequency response
Mark Wickert October 2016
"""
Ns,Mcol = sos.shape
w,Hcas = signal.freqz(sos[0,:3],sos[0,3:],w)
for k in range(1,Ns):
w,Htemp = signal.freqz(sos[k,:3],sos[k,3:],w)
Hcas *= Htemp
return w, Hcas
示例10: MOEar
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def MOEar(self, correctionType = 'ELC'):
""" Method to approximate middle-outer ear transfer function for linearly scaled
frequency representations, using an FIR approximation of order 600 taps.
As appears in :
- A. Härmä, and K. Palomäki, ''HUTear – a free Matlab toolbox for modeling of human hearing'',
in Proceedings of the Matlab DSP Conference, pp 96-99, Espoo, Finland 1999.
Arguments :
correctionType : (string) String which specifies the type of correction :
'ELC' - Equal Loudness Curves at 60 dB (default)
'MAP' - Minimum Audible Pressure at ear canal
'MAF' - Minimum Audible Field
Returns :
LTq : (ndarray) 1D Array containing the transfer function, without the DC sub-band.
"""
# Parameters
firOrd = self.nfft
Cr, fr, Crdb = self.OutMidCorrection(correctionType, firOrd, self.fs)
Cr[self.nfft - 1] = 0.
# FIR Design
A = firwin2(firOrd, fr, Cr, nyq = self.fs/2)
B = 1
_, LTq = freqz(A, B, firOrd, self.fs)
LTq = 20. * np.log10(np.abs(LTq))
LTq -= max(LTq)
return LTq[:self.nfft/2 + 1]
示例11: arma_periodogram
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def arma_periodogram(ar, ma, worN=None, whole=0):
'''periodogram for ARMA process given by lag-polynomials ar and ma
Parameters
----------
ar : array_like
autoregressive lag-polynomial with leading 1 and lhs sign
ma : array_like
moving average lag-polynomial with leading 1
worN : {None, int}, optional
option for scipy.signal.freqz (read "w or N")
If None, then compute at 512 frequencies around the unit circle.
If a single integer, the compute at that many frequencies.
Otherwise, compute the response at frequencies given in worN
whole : {0,1}, optional
options for scipy.signal.freqz
Normally, frequencies are computed from 0 to pi (upper-half of
unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi.
Returns
-------
w : array
frequencies
sd : array
periodogram, spectral density
Notes
-----
Normalization ?
This uses signal.freqz, which does not use fft. There is a fft version
somewhere.
'''
w, h = signal.freqz(ma, ar, worN=worN, whole=whole)
sd = np.abs(h)**2/np.sqrt(2*np.pi)
if np.sum(np.isnan(h)) > 0:
# this happens with unit root or seasonal unit root'
print('Warning: nan in frequency response h, maybe a unit root')
return w, sd
示例12: mfbe2lsf
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def mfbe2lsf(mfbe, lsf_order):
NFFT = 512
M = get_filterbank(n_filters=mfbe.shape[1], NFFT=NFFT, normalize=False, htk=True)
M_inv = pinv(M)
p = lsf_order
lsf = np.zeros(( len(mfbe), lsf_order), dtype=np.float64)
spec = np.zeros((len(mfbe), NFFT/2+1), dtype=np.float64)
for i, mfbe_vec in enumerate(mfbe):
# invert mel filterbank
spec_vec = np.dot(M_inv, np.power(10, mfbe_vec))
# floor reconstructed spectrum
spec_vec = np.maximum(spec_vec, 1e-9)
# squared magnitude 2-sided spectrum
twoside = np.r_[spec_vec, np.flipud(spec_vec[1:-1])]
twoside = np.square(twoside)
r = np.fft.ifft(twoside)
r = r.real
# reference from talkbox
# a,_,_ = TB.levinson(r, order=p)
# levinson-durbin
a = LA.solve_toeplitz(r[0:p],r[1:p+1])
a = np.r_[1.0, -1.0*a]
lsf[i,:] = poly2lsf(a)
# reconstructed all-pole spectrum
w, H = freqz(b=1.0, a=a, worN=NFFT, whole=True)
spec[i,:] = np.abs(H[:(NFFT/2+1)])
return lsf, spec
示例13: spec2lsf
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def spec2lsf(spec, lsf_order=30):
NFFT = 2*(spec.shape[0]-1)
n_frames = spec.shape[1]
p = lsf_order
lsf = np.zeros(( n_frames, lsf_order), dtype=np.float64)
spec_rec = np.zeros(spec.shape)
for i, spec_vec in enumerate(spec.T):
# floor reconstructed spectrum
spec_vec = np.maximum(spec_vec, 1e-9)
# squared magnitude 2-sided spectrum
twoside = np.r_[spec_vec, np.flipud(spec_vec[1:-1])]
twoside = np.square(twoside)
r = np.fft.ifft(twoside)
r = r.real
# levinson-durbin
a = LA.solve_toeplitz(r[0:p],r[1:p+1])
a = np.r_[1.0, -1.0*a]
lsf[i,:] = poly2lsf(a)
# reconstructed all-pole spectrum
w, H = freqz(b=1.0, a=a, worN=NFFT, whole=True)
spec_rec[:,i] = np.abs(H[:(NFFT/2+1)])
return lsf, spec_rec
示例14: arma_periodogram
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def arma_periodogram(ar, ma, worN=None, whole=0):
"""
Periodogram for ARMA process given by lag-polynomials ar and ma
Parameters
----------
ar : array_like
autoregressive lag-polynomial with leading 1 and lhs sign
ma : array_like
moving average lag-polynomial with leading 1
worN : {None, int}, optional
option for scipy.signal.freqz (read "w or N")
If None, then compute at 512 frequencies around the unit circle.
If a single integer, the compute at that many frequencies.
Otherwise, compute the response at frequencies given in worN
whole : {0,1}, optional
options for scipy.signal.freqz
Normally, frequencies are computed from 0 to pi (upper-half of
unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi.
Returns
-------
w : array
frequencies
sd : array
periodogram, spectral density
Notes
-----
Normalization ?
This uses signal.freqz, which does not use fft. There is a fft version
somewhere.
"""
w, h = signal.freqz(ma, ar, worN=worN, whole=whole)
sd = np.abs(h) ** 2 / np.sqrt(2 * np.pi)
if np.any(np.isnan(h)):
# this happens with unit root or seasonal unit root'
import warnings
warnings.warn('Warning: nan in frequency response h, maybe a unit '
'root', RuntimeWarning)
return w, sd
示例15: compute_frequency_response
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import freqz [as 別名]
def compute_frequency_response(filter_coefs, a_vals, fs):
"""Compute the frequency response of a filter.
Parameters
----------
filter_coefs : 1d or 2d array
If 1d, interpreted as the B-value filter coefficients.
If 2d, interpreted as the second-order (sos) filter coefficients.
a_vals : 1d array or None
The A-value filter coefficients for a filter.
If second-order filter coefficients are provided in `filter_coefs`, must be None.
fs : float
Sampling rate, in Hz.
Returns
-------
f_db : 1d array
Frequency vector corresponding to attenuation decibels, in Hz.
db : 1d array
Degree of attenuation for each frequency specified in `f_db`, in dB.
Examples
--------
Compute the frequency response for an FIR filter:
>>> from neurodsp.filt.fir import design_fir_filter
>>> filter_coefs = design_fir_filter(fs=500, pass_type='bandpass', f_range=(8, 12))
>>> f_db, db = compute_frequency_response(filter_coefs, 1, fs=500)
Compute the frequency response for an IIR filter, which uses SOS coefficients:
>>> from neurodsp.filt.iir import design_iir_filter
>>> sos_coefs = design_iir_filter(fs=500, pass_type='bandpass',
... f_range=(8, 12), butterworth_order=3)
>>> f_db, db = compute_frequency_response(sos_coefs, None, fs=500)
"""
if filter_coefs.ndim == 1 and a_vals is not None:
# Compute response for B & A value filter coefficient inputs
w_vals, h_vals = freqz(filter_coefs, a_vals, worN=int(fs * 2))
elif filter_coefs.ndim == 2 and a_vals is None:
# Compute response for sos filter coefficient inputs
w_vals, h_vals = sosfreqz(filter_coefs, worN=int(fs * 2))
else:
raise ValueError("The organization of the filter coefficient inputs is not understood.")
f_db = w_vals * fs / (2. * np.pi)
db = 20 * np.log10(abs(h_vals))
return f_db, db