當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.firwin方法代碼示例

本文整理匯總了Python中scipy.signal.firwin方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.firwin方法的具體用法?Python signal.firwin怎麽用?Python signal.firwin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.firwin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mono_FM

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def mono_FM(x,fs=2.4e6,file_name='test.wav'):
    """
    Decimate complex baseband input by 10
    Design 1st decimation lowpass filter (f_c = 200 KHz)
    """
    b = signal.firwin(64,2*200e3/float(fs))
    # Filter and decimate (should be polyphase)
    y = signal.lfilter(b,1,x)
    z = ss.downsample(y,10)
    # Apply complex baseband discriminator
    z_bb = discrim(z)
    # Design 2nd decimation lowpass filter (fc = 12 KHz)
    bb = signal.firwin(64,2*12e3/(float(fs)/10))
    # Filter and decimate
    zz_bb = signal.lfilter(bb,1,z_bb)
    # Decimate by 5
    z_out = ss.downsample(zz_bb,5)
    # Save to wave file
    ss.to_wav(file_name, 48000, z_out/2)
    print('Done!')
    return z_bb, z_out 
開發者ID:mwickert,項目名稱:scikit-dsp-comm,代碼行數:23,代碼來源:rtlsdr_helper.py

示例2: test_vs_lfilter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def test_vs_lfilter(self):
        # Check that up=1.0 gives same answer as lfilter + slicing
        random_state = np.random.RandomState(17)
        try_types = (int, np.float32, np.complex64, float, complex)
        size = 10000
        down_factors = [2, 11, 79]

        for dtype in try_types:
            x = random_state.randn(size).astype(dtype)
            if dtype in (np.complex64, np.complex128):
                x += 1j * random_state.randn(size)

            for down in down_factors:
                h = firwin(31, 1. / down, window='hamming')
                yl = lfilter(h, 1.0, x)[::down]
                y = upfirdn(h, x, up=1, down=down)
                assert_allclose(yl, y[:yl.size], atol=1e-7, rtol=1e-7) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:19,代碼來源:test_upfirdn.py

示例3: low_cut_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def low_cut_filter(x, fs, cutoff=70):
    """FUNCTION TO APPLY LOW CUT FILTER

    Args:
        x (ndarray): Waveform sequence
        fs (int): Sampling frequency
        cutoff (float): Cutoff frequency of low cut filter

    Return:
        (ndarray): Low cut filtered waveform sequence
    """

    nyquist = fs // 2
    norm_cutoff = cutoff / nyquist

    # low cut filter
    fil = firwin(255, norm_cutoff, pass_zero=False)
    lcf_x = lfilter(fil, 1, x)

    return lcf_x 
開發者ID:unilight,項目名稱:cdvae-vc,代碼行數:22,代碼來源:feature_extract.py

示例4: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def __init__(self, fs, parameters):

        fs_min = 1000.0
        if (fs > fs_min):
            dec_factor = parameters['dec_factor']
        else:
            dec_factor = 1

        filter_order = parameters['bp_forder']
        f_hp = parameters['bp_low']
        f_lp = parameters['bp_high']

        f1 = f_hp/(fs/2)
        f2 = f_lp/(fs/2)

        self.b = firwin(filter_order+1, [f1, f2], pass_zero=False)
        self.a = 1
        self.dec_factor = dec_factor 
開發者ID:bjbschmitt,項目名稱:AMFM_decompy,代碼行數:20,代碼來源:pYAAPT.py

示例5: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def __init__(self, id_mask='F1804', ntaps=4, debug=False):
        """Initialize the WeightSensor.

        Parameters
        ----------
        id_mask : str
            A template for the first n digits of the device IDs for valid load cells.
        ntaps : int
            Maximum number of samples to perform filtering over.
        debug : bool
            If True, have sensor seem to work normally but just return zeros.
        """
        self._id_mask = id_mask
        self._weight_buffers = []
        self._ntaps = ntaps
        self._debug = debug
        self._filter_coeffs = signal.firwin(ntaps, 0.1)
        self._running = False 
開發者ID:BerkeleyAutomation,項目名稱:perception,代碼行數:20,代碼來源:weight_sensor.py

示例6: design

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def design(self, fs, fc, bandwidth, ripple_db=60.0):
        """
        Designs a FIR filter that is a low-pass filter.
        fs : sampling frequency (Hz)
        fc : cut-off frequency (Hz)
        bandwidth : transition bandwidth (Hz)s
        """
        # Compute the order and Kaiser parameter for the FIR filter.
        N, beta = signal.kaiserord(ripple_db, bandwidth / fs * 2)

        # Use firwin with a Kaiser window to create a lowpass FIR filter.
        fir = signal.firwin(N, fc / fs * 2, window=('kaiser', beta))

        # the filter must be symmetric, in order to be zero-phase
        assert np.all(np.abs(fir - fir[::-1]) < 1e-15)

        self.fir = fir / np.sum(fir)
        self.fs = fs
        return self 
開發者ID:pactools,項目名稱:pactools,代碼行數:21,代碼來源:carrier.py

示例7: low_cut_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def low_cut_filter(x, fs, cutoff=70):
    """Low cut filter

    Parameters
    ---------
    x : array, shape(`samples`)
        Waveform sequence
    fs: array, int
        Sampling frequency
    cutoff : float, optional
        Cutoff frequency of low cut filter
        Default set to 70 [Hz]

    Returns
    ---------
    lcf_x : array, shape(`samples`)
        Low cut filtered waveform sequence
    """

    nyquist = fs // 2
    norm_cutoff = cutoff / nyquist

    # low cut filter
    fil = firwin(255, norm_cutoff, pass_zero=False)
    lcf_x = lfilter(fil, 1, x)

    return lcf_x 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:29,代碼來源:misc.py

示例8: _high_frequency_completion

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def _high_frequency_completion(self, x, transformed):
        """
        Please see Sect. 3.2 and 3.3 in the following paper to know why we complete the
        unvoiced synthesized voice of the original voice into high frequency range
        of F0 transformed voice.

        - K. Kobayashi et al., "F0 transformation techniques for statistical voice
        conversion with direct waveform modification with spectral differential,"
        Proc. IEEE SLT 2016, pp. 693-700. 2016.
        """
        # construct feature extractor and synthesis
        feat = FeatureExtractor(fs=self.fs)
        f0, spc, ap = feat.analyze(x)
        uf0 = np.zeros(len(f0))

        # synthesis
        synth = Synthesizer(fs=self.fs)
        unvoice_anasyn = synth.synthesis_spc(uf0, spc, ap)

        # HPF for synthesized speech
        fil = firwin(255, self.f0rate, pass_zero=False)
        HPFed_unvoice_anasyn = filtfilt(fil, 1, unvoice_anasyn)

        if len(HPFed_unvoice_anasyn) > len(transformed):
            return transformed + HPFed_unvoice_anasyn[:len(transformed)]
        else:
            transformed[:len(HPFed_unvoice_anasyn)] += HPFed_unvoice_anasyn
            return transformed 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:30,代碼來源:shifter.py

示例9: low_pass_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def low_pass_filter(data, cutoff, fs, n_taps=255):
    """Apply low-pass filter

    Parameters
    ----------
    data : array, shape (`T`, `dim`)
        Array of sequence.
    cutoff : int,
        Cutoff frequency
    fs : int,
        Sampling frequency
    n_taps : int, optional
        Tap number

    Returns
    -------
    modified data: array, shape (`T`, `dim`)
        Array of modified sequence.
    """
    if data.shape[0] < n_taps * 3:
        raise ValueError(
            'Length of data should be three times longer than n_taps.')

    fil = firwin(n_taps, cutoff, pass_zero=True, nyq=fs//2)
    modified_data = filtfilt(fil, 1, data, axis=0)
    return modified_data 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:28,代碼來源:filter.py

示例10: high_pass_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def high_pass_filter(data, cutoff, fs, n_taps=255):
    """Apply high-pass filter

    Parameters
    ----------
    data : array, shape (`T`, `dim`)
        Array of sequence.
    cutoff : int,
        Cutoff frequency
    fs : int,
        Sampling frequency
    n_taps : int, optional
        Tap number

    Returns
    -------
    modified data: array, shape (`T`, `dim`)
        Array of modified sequence.
    """
    if data.shape[0] < n_taps * 3:
        raise ValueError(
            'Length of data should be three times longer than n_taps.')

    fil = firwin(n_taps, cutoff, pass_zero=False, nyq=fs//2)
    modified_data = filtfilt(fil, 1, data, axis=0)
    return modified_data 
開發者ID:k2kobayashi,項目名稱:sprocket,代碼行數:28,代碼來源:filter.py

示例11: polyphase_lowpass

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def polyphase_lowpass(arr, downsample=2, n_taps=50, filter_pad=1.1):
    filt = firwin(downsample * n_taps, 1 / (downsample * filter_pad))
    filtered = polyphase_single_filter(arr, downsample, filt)
    return filtered 
開發者ID:kastnerkyle,項目名稱:tools,代碼行數:6,代碼來源:audio_tools.py

示例12: test_poly_vs_filtfilt

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def test_poly_vs_filtfilt(self):
        # Check that up=1.0 gives same answer as filtfilt + slicing
        random_state = np.random.RandomState(17)
        try_types = (int, np.float32, np.complex64, float, complex)
        size = 10000
        down_factors = [2, 11, 79]

        for dtype in try_types:
            x = random_state.randn(size).astype(dtype)
            if dtype in (np.complex64, np.complex128):
                x += 1j * random_state.randn(size)

            # resample_poly assumes zeros outside of signl, whereas filtfilt
            # can only constant-pad. Make them equivalent:
            x[0] = 0
            x[-1] = 0

            for down in down_factors:
                h = signal.firwin(31, 1. / down, window='hamming')
                yf = filtfilt(h, 1.0, x, padtype='constant')[::down]

                # Need to pass convolved version of filter to resample_poly,
                # since filtfilt does forward and backward, but resample_poly
                # only goes forward
                hc = convolve(h, h[::-1])
                y = signal.resample_poly(x, 1, down, window=hc)
                assert_allclose(yf, y, atol=1e-7, rtol=1e-7) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:29,代碼來源:test_signaltools.py

示例13: pb2bb

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def pb2bb(x, fs, fc, fd=None, flen=127, cutoff=None, axis=-1):
    """Convert passband signal to baseband.

    The baseband conversion uses a low-pass filter after downconversion, with a
    default cutoff frequency of `0.6*fd`, if `fd` is specified, or `1.1*fc` if `fd`
    is not specified. Alternatively, the user may specify the cutoff frequency
    explicitly.

    For communication applications, one may wish to use :func:`arlpy.comms.downconvert` instead,
    as that function supports matched filtering with a pulse shape rather than a generic
    low-pass filter.

    The convention used in that exp(2j*pi*fc*t) is a positive frequency carrier.

    :param x: passband signal
    :param fs: sampling rate of passband signal in Hz
    :param fc: carrier frequency in passband in Hz
    :param fd: sampling rate of baseband signal in Hz (``None`` => same as `fs`)
    :param flen: number of taps in the low-pass FIR filter
    :param cutoff: cutoff frequency in Hz (``None`` means auto-select)
    :param axis: axis of the signal, if multiple signals specified
    :returns: complex baseband signal, sampled at `fd`
    """
    if cutoff is None:
        cutoff = 0.6*fd if fd is not None else 1.1*_np.abs(fc)
    osc = _np.sqrt(2)*_np.exp(-2j*_np.pi*fc*time(x.shape[axis],fs))
    y = x * _utils.broadcastable_to(osc, x.shape, axis)
    hb = _sig.firwin(flen, cutoff=cutoff, nyq=fs/2.0)
    y = _sig.filtfilt(hb, 1, y, axis=axis)
    if fd is not None and fd != fs:
        y = _sig.resample_poly(y, 2*fd, fs, axis=axis)
        y = _np.apply_along_axis(lambda a: a[::2], axis, y)
    return y 
開發者ID:org-arl,項目名稱:arlpy,代碼行數:35,代碼來源:signal.py

示例14: save_wav

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def save_wav(wav, path, hparams):
	wav = wav / np.abs(wav).max() * 0.999
	f1 = 0.5 * 32767 / max(0.01, np.max(np.abs(wav)))
	f2 = np.sign(wav) * np.power(np.abs(wav), 0.95)
	wav = f1 * f2
	wav = signal.convolve(wav, signal.firwin(hparams.num_freq, [hparams.fmin, hparams.fmax], pass_zero=False, fs=hparams.sample_rate))
	#proposed by @dsmiller
	wavfile.write(path, hparams.sample_rate, wav.astype(np.int16)) 
開發者ID:Joee1995,項目名稱:tacotron2-mandarin-griffin-lim,代碼行數:10,代碼來源:audio.py

示例15: firwin_lpf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import firwin [as 別名]
def firwin_lpf(N_taps, fc, fs = 1.0):
    """
    Design a windowed FIR lowpass filter in terms of passband
    critical frequencies f1 < f2 in Hz relative to sampling rate
    fs in Hz. The number of taps must be provided.
    
    Mark Wickert October 2016
    """
    return signal.firwin(N_taps,2*fc/fs) 
開發者ID:mwickert,項目名稱:scikit-dsp-comm,代碼行數:11,代碼來源:fir_design_helper.py


注:本文中的scipy.signal.firwin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。