當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.find_peaks方法代碼示例

本文整理匯總了Python中scipy.signal.find_peaks方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.find_peaks方法的具體用法?Python signal.find_peaks怎麽用?Python signal.find_peaks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.find_peaks方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: detect_impulses

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def detect_impulses(x, fs, k=10, tdist=1e-3):
    """Detect impulses in `x`

    The minimum height of impulses is defined by `a+k*b`
    where `a` is median of the envelope of `x` and `b` is median 
    absolute deviation (MAD) of the envelope of `x`.   

    :param x: real signal
    :param fs: sampling frequency in Hz
    :param k: multiple of MAD for the impulse minimum height (default: 10)
    :param tdist: minimum time difference between neighbouring impulses in sec (default: 1e-3)
    :returns: indices and heights of detected impulses

    >>> nsamp = 1000
    >>> ind_impulses = np.array([10, 115, 641, 888])
    >>> x = np.zeros((nsamp))
    >>> x[ind_impulses] = 1
    >>> x += np.random.normal(0, 0.1, nsamp)
    >>> ind_pks, h_pks = signal.detect_impulses(x, fs=100000, k=10, tdist=1e-3)
    """
    env = envelope(x)
    height = _np.median(env)+k*_np.median(_np.abs(env-_np.median(env)))
    distance = int(tdist*fs)
    ind_imp, properties = _sig.find_peaks(env, height=height, distance=distance)
    return ind_imp, properties["peak_heights"] 
開發者ID:org-arl,項目名稱:arlpy,代碼行數:27,代碼來源:signal.py

示例2: FeatureSpectralTonalPowerRatio

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def FeatureSpectralTonalPowerRatio(X, f_s, G_T=5e-4):

    X = X**2

    fSum = X.sum(axis=0)
    vtpr = np.zeros(fSum.shape)

    for n in range(0, X.shape[1]):
        if fSum[n] < G_T:
            continue

        # find local maxima above the threshold
        afPeaks = find_peaks(X[:, n], height=G_T)

        if not afPeaks[0].size:
            continue

        # calculate ratio
        vtpr[n] = X[afPeaks[0], n].sum() / fSum[n]

    return (vtpr) 
開發者ID:alexanderlerch,項目名稱:pyACA,代碼行數:23,代碼來源:FeatureSpectralTonalPowerRatio.py

示例3: _calculate_results

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def _calculate_results(self, s, interval, df, loader):
        if not df.empty:
            hist = pd.cut(df[Names.HEART_RATE], np.arange(30, 90), right=False).value_counts(sort=False)
            peaks, _ = find_peaks(hist)
            for peak in peaks:
                rest_hr = hist.index[peak].left
                measurements = hist.loc[rest_hr]
                if measurements > len(df) * 0.01:
                    log.debug(f'Rest HR is {rest_hr} with {measurements} values')
                    # conversion to int as value above is numpy int64
                    loader.add(Titles.REST_HR, Units.BPM, S.join(S.MIN, S.MSR), interval,
                               int(rest_hr), local_date_to_time(interval.start), StatisticJournalInteger,
                               'The rest heart rate')
                    return
                else:
                    log.debug(f'Skipping rest HR at {rest_hr} because too few measurements ({measurements}/{len(df)})')
        log.warning(f'Unable to calculate rest HR at {format_date(interval.start)}') 
開發者ID:andrewcooke,項目名稱:choochoo,代碼行數:19,代碼來源:heart_rate.py

示例4: preprocess

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def preprocess(data, config):
    sr = config.sample_rate
    if sr == None:
      sr = 300
    data = np.nan_to_num(data) # removing NaNs and Infs
    from scipy.signal import resample
    data = resample(data, int(len(data) * 360 / sr) ) # resample to match the data sampling rate 360(mit), 300(cinc)
    from sklearn import preprocessing
    data = preprocessing.scale(data)
    from scipy.signal import find_peaks
    peaks, _ = find_peaks(data, distance=150)
    data = data.reshape(1,len(data))
    data = np.expand_dims(data, axis=2) # required by Keras
    return data, peaks

# predict 
開發者ID:physhik,項目名稱:ecg-mit-bih,代碼行數:18,代碼來源:utils.py

示例5: PitchSpectralAcf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def PitchSpectralAcf(X, f_s):

    # initialize
    f_min = 300
    f = np.zeros(X.shape[1])

    # use spectral symmetry for robustness
    X[0, :] = np.max(X)
    X = np.concatenate((np.flipud(X), X), axis=0)

    # compute the ACF
    for n in range(0, X.shape[1]):

        if X[:, n].sum() < 1e-20:
            continue

        eta_min = int(round(f_min / f_s * (X.shape[0] - 2))) - 1

        afCorr = np.correlate(X[:, n], X[:, n], "full") / np.dot(X[:, n], X[:, n])
        afCorr = afCorr[np.arange(X.shape[0], afCorr.size)]

        # find the highest local maximum
        iPeaks = find_peaks(afCorr, height=0)
        if iPeaks[0].size:
            eta_min = np.max([eta_min, iPeaks[0][0] - 1])
        f[n] = np.argmax(afCorr[np.arange(eta_min, afCorr.size)]) + 1

        # find max index and convert to Hz (note: X has double length)
        f[n] = (f[n] + eta_min) / (X.shape[0] - 2) * f_s

    return (f) 
開發者ID:alexanderlerch,項目名稱:pyACA,代碼行數:33,代碼來源:PitchSpectralAcf.py

示例6: find_peaks_simple

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def find_peaks_simple(x):
    if x.ndim == 1:
        # Delegate to scipy's peak finder.
        return find_peaks(x)[0],
    else:
        # Use maximum filter for peak finding.
        y = maximum_filter(x, 3)
        return np.where(x == y) 
開發者ID:morriswmz,項目名稱:doatools.py,代碼行數:10,代碼來源:core.py

示例7: get_picks_from_pdf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def get_picks_from_pdf(feature, phase, pick_set, height=0.5, distance=100):
    i = feature.phase.index(phase)
    peaks, properties = find_peaks(feature.pdf[-1, :, i], height=height, distance=distance)

    for p in peaks:
        if p:
            pick_time = UTCDateTime(feature.starttime) + p * feature.delta
            feature.pick_time.append(pick_time.isoformat())
            feature.pick_phase.append(feature.phase[i])
            feature.pick_set.append(pick_set) 
開發者ID:SeisNN,項目名稱:SeisNN,代碼行數:12,代碼來源:pick.py

示例8: infer_pitch_v2

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def infer_pitch_v2(pitch, shortest=5, offset_interval=6):
    w_on = pitch[:,2]
    w_dura = pitch[:,1]

    peaks, properties = find_peaks(w_on, distance=shortest, width=5)
    if len(peaks) == 0:
        return []

    notes = []
    adjust = 5 if shortest==10 else 2
    for i in range(len(peaks)-1):
        notes.append({"start": peaks[i]-adjust, "end": peaks[i+1]-adjust, "stren": pitch[peaks[i], 2]})
    notes.append({"start": peaks[-1]-adjust, "end": len(w_on), "stren": pitch[peaks[-1], 2]})

    del_idx = []
    for idx, p in enumerate(peaks):
        upper = int(peaks[idx+1]) if idx<len(peaks)-2 else len(w_dura)
        for i in range(p, upper):
            if np.sum(w_dura[i:i+offset_interval]) == 0:
                if i - notes[idx]["start"] < shortest:
                    del_idx.append(idx)
                else:
                    notes[idx]["end"] = i
                break

    for ii, i in enumerate(del_idx):
        del notes[i-ii]

    return notes 
開發者ID:BreezeWhite,項目名稱:Music-Transcription-with-Semantic-Segmentation,代碼行數:31,代碼來源:postprocess.py

示例9: add_noise

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def add_noise(config):
    noises = dict()
    noises["trainset"] = list()
    noises["testset"] = list() 
    import csv
    try:
        testlabel = list(csv.reader(open('training2017/REFERENCE.csv')))
    except:
        cmd = "curl -O https://archive.physionet.org/challenge/2017/training2017.zip"
        os.system(cmd)
        os.system("unzip training2017.zip")
        testlabel = list(csv.reader(open('training2017/REFERENCE.csv')))
    for i, label in enumerate(testlabel):
      if label[1] == '~':
        filename = 'training2017/'+ label[0] + '.mat'
        from scipy.io import loadmat
        noise = loadmat(filename)
        noise = noise['val']
        _, size = noise.shape
        noise = noise.reshape(size,)
        noise = np.nan_to_num(noise) # removing NaNs and Infs
        from scipy.signal import resample
        noise= resample(noise, int(len(noise) * 360 / 300) ) # resample to match the data sampling rate 360(mit), 300(cinc)
        from sklearn import preprocessing
        noise = preprocessing.scale(noise)
        noise = noise/1000*6 # rough normalize, to be improved 
        from scipy.signal import find_peaks
        peaks, _ = find_peaks(noise, distance=150)
        choices = 10 # 256*10 from 9000
        picked_peaks = np.random.choice(peaks, choices, replace=False)
        for j, peak in enumerate(picked_peaks):
          if peak > config.input_size//2 and peak < len(noise) - config.input_size//2:
              start,end  = peak-config.input_size//2, peak+config.input_size//2
              if i > len(testlabel)/6:
                noises["trainset"].append(noise[start:end].tolist())
              else:
                noises["testset"].append(noise[start:end].tolist())
    return noises 
開發者ID:physhik,項目名稱:ecg-mit-bih,代碼行數:40,代碼來源:utils.py

示例10: test_k2_peaks_finite

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def test_k2_peaks_finite(self):
        """Tests the correct peak locations and intensities are found for the
        k=2 term in finite systems.
        """
        desc = LMBTR(
            species=["H", "O"],
            k2={
                "geometry": {"function": "distance"},
                "grid": {"min": -1, "max": 3, "sigma": 0.5, "n": 1000},
                "weighting": {"function": "unity"},
            },
            normalize_gaussians=False,
            periodic=False,
            flatten=True,
            sparse=False
        )
        features = desc.create(H2O, [0])[0, :]
        pos = H2O.get_positions()
        x = desc.get_k2_axis()

        # Check the X-H peaks
        xh_feat = features[desc.get_location(("X", "H"))]
        xh_peak_indices = find_peaks(xh_feat, prominence=0.5)[0]
        xh_peak_locs = x[xh_peak_indices]
        xh_peak_ints = xh_feat[xh_peak_indices]
        self.assertTrue(np.allclose(xh_peak_locs, [np.linalg.norm(pos[0] - pos[2])], rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(xh_peak_ints, [1], rtol=0, atol=1e-2))

        # Check the X-O peaks
        xo_feat = features[desc.get_location(("X", "O"))]
        xo_peak_indices = find_peaks(xo_feat, prominence=0.5)[0]
        xo_peak_locs = x[xo_peak_indices]
        xo_peak_ints = xo_feat[xo_peak_indices]
        self.assertTrue(np.allclose(xo_peak_locs, np.linalg.norm(pos[0] - pos[1]), rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(xo_peak_ints, [1], rtol=0, atol=1e-2))

        # Check that everything else is zero
        features[desc.get_location(("X", "H"))] = 0
        features[desc.get_location(("X", "O"))] = 0
        self.assertEqual(features.sum(), 0) 
開發者ID:SINGROUP,項目名稱:dscribe,代碼行數:42,代碼來源:lmbtr.py

示例11: test_k1_peaks_finite

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def test_k1_peaks_finite(self):
        """Tests the correct peak locations and intensities are found for the
        k=1 term.
        """
        desc = MBTR(
            species=[1, 8],
            k1={
                "geometry": {"function": "atomic_number"},
                "grid": {"min": 0, "max": 9, "sigma": 0.5, "n": 1000}
            },
            normalize_gaussians=False,
            periodic=False,
            flatten=True,
            sparse=False
        )
        features = desc.create(H2O)[0, :]
        x = desc.get_k1_axis()

        # Check the H peaks
        h_feat = features[desc.get_location(("H"))]
        h_peak_indices = find_peaks(h_feat, prominence=1)[0]
        h_peak_locs = x[h_peak_indices]
        h_peak_ints = h_feat[h_peak_indices]
        self.assertTrue(np.allclose(h_peak_locs, [1], rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(h_peak_ints, [2], rtol=0, atol=1e-2))

        # Check the O peaks
        o_feat = features[desc.get_location(("O"))]
        o_peak_indices = find_peaks(o_feat, prominence=1)[0]
        o_peak_locs = x[o_peak_indices]
        o_peak_ints = o_feat[o_peak_indices]
        self.assertTrue(np.allclose(o_peak_locs, [8], rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(o_peak_ints, [1], rtol=0, atol=1e-2))

        # Check that everything else is zero
        features[desc.get_location(("H"))] = 0
        features[desc.get_location(("O"))] = 0
        self.assertEqual(features.sum(), 0) 
開發者ID:SINGROUP,項目名稱:dscribe,代碼行數:40,代碼來源:mbtr.py

示例12: test_k2_peaks_finite

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def test_k2_peaks_finite(self):
        """Tests the correct peak locations and intensities are found for the
        k=2 term in finite systems.
        """
        desc = MBTR(
            species=[1, 8],
            k2={
                "geometry": {"function": "distance"},
                "grid": {"min": -1, "max": 3, "sigma": 0.5, "n": 1000},
                "weighting": {"function": "unity"},
            },
            normalize_gaussians=False,
            periodic=False,
            flatten=True,
            sparse=False
        )
        features = desc.create(H2O)[0, :]
        pos = H2O.get_positions()
        x = desc.get_k2_axis()

        # Check the H-H peaks
        hh_feat = features[desc.get_location(("H", "H"))]
        hh_peak_indices = find_peaks(hh_feat, prominence=0.5)[0]
        hh_peak_locs = x[hh_peak_indices]
        hh_peak_ints = hh_feat[hh_peak_indices]
        self.assertTrue(np.allclose(hh_peak_locs, [np.linalg.norm(pos[0] - pos[2])], rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(hh_peak_ints, [1], rtol=0, atol=1e-2))

        # Check the O-H peaks
        ho_feat = features[desc.get_location(("H", "O"))]
        ho_peak_indices = find_peaks(ho_feat, prominence=0.5)[0]
        ho_peak_locs = x[ho_peak_indices]
        ho_peak_ints = ho_feat[ho_peak_indices]
        self.assertTrue(np.allclose(ho_peak_locs, np.linalg.norm(pos[0] - pos[1]), rtol=0, atol=1e-2))
        self.assertTrue(np.allclose(ho_peak_ints, [2], rtol=0, atol=1e-2))

        # Check that everything else is zero
        features[desc.get_location(("H", "H"))] = 0
        features[desc.get_location(("H", "O"))] = 0
        self.assertEqual(features.sum(), 0) 
開發者ID:SINGROUP,項目名稱:dscribe,代碼行數:42,代碼來源:mbtr.py

示例13: panPeakDetect

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def panPeakDetect(detection, fs):    

    min_distance = int(0.25*fs)
    peaks, _ = signal.find_peaks(detection, distance=min_distance)      

    signal_peaks = []
    noise_peaks = []

    SPKI = 0.0
    NPKI = 0.0

    threshold_I1 = 0.0
    threshold_I2 = 0.0

    RR_missed = 0
    index = 0
    indexes = []

    missed_peaks = []
    for peak in peaks:

        if detection[peak] > threshold_I1:
               
            signal_peaks.append(peak)
            indexes.append(index)
            SPKI = 0.125*detection[signal_peaks[-1]] + 0.875*SPKI
            if RR_missed!=0:
                if signal_peaks[-1]-signal_peaks[-2]>RR_missed:
                    missed_section_peaks = peaks[indexes[-2]+1:indexes[-1]]
                    missed_section_peaks2 = []
                    for missed_peak in missed_section_peaks:
                        if missed_peak-signal_peaks[-2]>min_distance and signal_peaks[-1]-missed_peak>min_distance and detection[missed_peak]>threshold_I2:
                            missed_section_peaks2.append(missed_peak)

                    if len(missed_section_peaks2)>0:           
                        missed_peak = missed_section_peaks2[np.argmax(detection[missed_section_peaks2])]
                        missed_peaks.append(missed_peak)
                        signal_peaks.append(signal_peaks[-1])
                        signal_peaks[-2] = missed_peak   
        
        else:
            noise_peaks.append(peak)
            NPKI = 0.125*detection[noise_peaks[-1]] + 0.875*NPKI
        
        threshold_I1 = NPKI + 0.25*(SPKI-NPKI)
        threshold_I2 = 0.5*threshold_I1

        if len(signal_peaks)>8:
            RR = np.diff(signal_peaks[-9:])
            RR_ave = int(np.mean(RR))
            RR_missed = int(1.66*RR_ave)

        index = index+1

    signal_peaks.pop(0)

    return signal_peaks 
開發者ID:luishowell,項目名稱:ecg-detectors,代碼行數:59,代碼來源:ecgdetectors.py

示例14: PitchTimeAuditory

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def PitchTimeAuditory(x, iBlockLength, iHopLength, f_s):

    # initialize
    iNumOfBlocks = math.ceil(x.size / iHopLength)
    f = np.zeros(iNumOfBlocks)
    f_max = 2000
    iNumBands = 20
    fLengthLpInS = 0.001

    iLengthLp = math.ceil(fLengthLpInS * f_s)

    # compute time stamps
    t = (np.arange(0, iNumOfBlocks) * iHopLength + (iBlockLength / 2)) / f_s

    # apply filterbank
    X = ToolGammatoneFb(x, f_s, iNumBands)

    # half wave rectification
    X[X < 0] = 0

    # smooth the results with a moving average filter
    b = np.ones(iLengthLp) / iLengthLp
    X = filtfilt(b, 1, X)

    for n in range(0, iNumOfBlocks):

        eta_min = int(round(f_s / f_max))
        afSumCorr = np.zeros(iBlockLength - 1)
        x_tmp = np.zeros(iBlockLength)

        i_start = n * iHopLength
        i_stop = np.min([x.size - 1, i_start + iBlockLength - 1])

        # compute ACF per band and summarize
        for k in range(0, iNumBands):
            # get current block
            if X[k, np.arange(i_start, i_stop + 1)].sum() < 1e-20:
                continue
            else:
                x_tmp[np.arange(0, i_stop - i_start + 1)] = X[k, np.arange(i_start, i_stop + 1)]

            afCorr = np.correlate(x_tmp, x_tmp, "full") / np.dot(x_tmp, x_tmp)

            # aggregate bands with simple sum before peak picking
            afSumCorr += afCorr[np.arange(iBlockLength, afCorr.size)]

        if afSumCorr.sum() < 1e-20:
            continue

        # find the highest local maximum
        iPeaks = find_peaks(afSumCorr, height=0)
        if iPeaks[0].size:
            eta_min = np.max([eta_min, iPeaks[0][0] - 1])
        f[n] = np.argmax(afSumCorr[np.arange(eta_min + 1, afSumCorr.size)]) + 1

        # convert to Hz
        f[n] = f_s / (f[n] + eta_min + 1)

    return (f, t) 
開發者ID:alexanderlerch,項目名稱:pyACA,代碼行數:61,代碼來源:PitchTimeAuditory.py

示例15: computeNoveltyFunction

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import find_peaks [as 別名]
def computeNoveltyFunction(cNoveltyName, afAudioData, f_s, afWindow=None, iBlockLength=4096, iHopLength=512):

    # compute window function for FFT
    if afWindow is None:
        afWindow = ToolComputeHann(iBlockLength)

    assert(afWindow.shape[0] == iBlockLength), "parameter error: invalid window dimension"

    #mypackage = __import__(".Novelty" + cNoveltyName, package="pyACA")
    hNoveltyFunc = getattr(pyACA, "Novelty" + cNoveltyName)

    # initialization
    fLengthLpInS = 0.3
    iLengthLp = np.max([2, math.ceil(fLengthLpInS * f_s / iHopLength)])

    # pre-processing
    afAudioData = ToolPreprocAudio(afAudioData, iBlockLength)

    # in the real world, we would do this block by block...
    [f, t, X] = spectrogram(afAudioData,
                            f_s,
                            afWindow,
                            iBlockLength,
                            iBlockLength - iHopLength,
                            iBlockLength,
                            False,
                            True,
                            'spectrum')

    #  scale the same as for matlab
    X = np.sqrt(X / 2)

    # novelty function
    d = hNoveltyFunc(X, f_s)

    # smooth novelty function
    b = np.ones(10) / 10
    d = filtfilt(b, 1, d)
    d[d < 0] = 0

    # compute threshold
    b = np.ones(iLengthLp) / iLengthLp
    G_T = .5 * np.mean(d[np.arange(1, d.shape[0])]) + filtfilt(b, 1, d)

    # find local maxima above the threshold
    iPeaks = find_peaks(d - G_T, height=0)

    return (d, t, iPeaks[0]) 
開發者ID:alexanderlerch,項目名稱:pyACA,代碼行數:50,代碼來源:computeNoveltyFunction.py


注:本文中的scipy.signal.find_peaks方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。