本文整理匯總了Python中scipy.signal.dlti方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.dlti方法的具體用法?Python signal.dlti怎麽用?Python signal.dlti使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.dlti方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: butter
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def butter(order, Wn, N=1, btype='lowpass'):
"""
build MIMO butterworth filter of order ord and cut-off freq over Nyquist
freq ratio Wn.
The filter will have N input and N output and N*ord states.
Note: the state-space form of the digital filter does not depend on the
sampling time, but only on the Wn ratio.
As a result, this function only returns the A,B,C,D matrices of the filter
state-space form.
"""
# build DLTI SISO
num, den = scsig.butter(order, Wn, btype=btype, analog=False, output='ba')
Af, Bf, Cf, Df = scsig.tf2ss(num, den)
SSf = scsig.dlti(Af, Bf, Cf, Df, dt=1.0)
SStot = SSf
for ii in range(1, N):
SStot = join2(SStot, SSf)
return SStot.A, SStot.B, SStot.C, SStot.D
# ----------------------------------------------------------------------- Utils
示例2: freqresp
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def freqresp(self, wv):
"""
Calculate frequency response over frequencies wv
Note: this wraps frequency response function.
"""
dlti = True
if self.dt == None: dlti = False
return freqresp(self, wv, dlti=dlti)
示例3: build_SS_poly
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def build_SS_poly(Acf, ds, negative=False):
"""
Builds a discrete-time state-space representation of a polynomial system
whose frequency response has from:
Ypoly[oo,ii](k) = -A2[oo,ii] D2(k) - A1[oo,ii] D1(k) - A0[oo,ii]
where C1,D2 are discrete-time models of first and second derivatives, ds is
the time-step and the coefficient matrices are such that:
A{nn}=Acf[oo,ii,nn]
"""
Nout, Nin, Ncf = Acf.shape
assert Ncf == 3, 'Acf input last dimension must be equal to 3!'
Ader, Bder, Cder, Dder = SSderivative(ds)
SSder = scsig.dlti(Ader, Bder, Cder, Dder, dt=ds)
SSder02 = series(SSder, join2(np.array([[1]]), SSder))
SSder_all = copy.deepcopy(SSder02)
for ii in range(Nin - 1):
SSder_all = join2(SSder_all, SSder02)
# Build polynomial forcing terms
sign = 1.0
if negative == True: sign = -1.0
A0 = Acf[:, :, 0]
A1 = Acf[:, :, 1]
A2 = Acf[:, :, 2]
Kforce = np.zeros((Nout, 3 * Nin))
for ii in range(Nin):
Kforce[:, 3 * ii] = sign * (A0[:, ii])
Kforce[:, 3 * ii + 1] = sign * (A1[:, ii])
Kforce[:, 3 * ii + 2] = sign * (A2[:, ii])
SSpoly_neg = addGain(SSder_all, Kforce, where='out')
return SSpoly_neg
示例4: _test_phaseshift
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def _test_phaseshift(self, method, zero_phase):
rate = 120
rates_to = [15, 20, 30, 40] # q = 8, 6, 4, 3
t_tot = int(100) # Need to let antialiasing filters settle
t = np.arange(rate*t_tot+1) / float(rate)
# Sinusoids at 0.8*nyquist, windowed to avoid edge artifacts
freqs = np.array(rates_to) * 0.8 / 2
d = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t)
* signal.windows.tukey(t.size, 0.1))
for rate_to in rates_to:
q = rate // rate_to
t_to = np.arange(rate_to*t_tot+1) / float(rate_to)
d_tos = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t_to)
* signal.windows.tukey(t_to.size, 0.1))
# Set up downsampling filters, match v0.17 defaults
if method == 'fir':
n = 30
system = signal.dlti(signal.firwin(n + 1, 1. / q,
window='hamming'), 1.)
elif method == 'iir':
n = 8
wc = 0.8*np.pi/q
system = signal.dlti(*signal.cheby1(n, 0.05, wc/np.pi))
# Calculate expected phase response, as unit complex vector
if zero_phase is False:
_, h_resps = signal.freqz(system.num, system.den,
freqs/rate*2*np.pi)
h_resps /= np.abs(h_resps)
else:
h_resps = np.ones_like(freqs)
y_resamps = signal.decimate(d.real, q, n, ftype=system,
zero_phase=zero_phase)
# Get phase from complex inner product, like CSD
h_resamps = np.sum(d_tos.conj() * y_resamps, axis=-1)
h_resamps /= np.abs(h_resamps)
subnyq = freqs < 0.5*rate_to
# Complex vectors should be aligned, only compare below nyquist
assert_allclose(np.angle(h_resps.conj()*h_resamps)[subnyq], 0,
atol=1e-3, rtol=1e-3)
示例5: fast_xambg
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def fast_xambg(refChannel, srvChannel, rangeBins, freqBins, shortFilt=True):
''' Fast Cross-Ambiguity Fuction (frequency domain method)
Parameters:
refChannel: reference channel data
srvChannel: surveillance channel data
rangeBins: number of range bins to compute
freqBins: number of doppler bins to compute (should be power of 2)
shortFilt: (bool) chooses the type of decimation filter to use.
If True, uses an all-ones filter of length 1*(decimation factor)
If False, uses a flat-top window of length 10*(decimation factor)+1
Returns:
xambg: the cross-ambiguity surface. Dimensions are (nf, nlag+1, 1)
third dimension added for easy stacking in dask
'''
if refChannel.shape != srvChannel.shape:
raise ValueError('Input vectors must have the same length')
# calculate decimation factor
ndecim = int(refChannel.shape[0]/freqBins)
# pre-allocate space for the result
xambg = np.zeros((freqBins, rangeBins+1, 1), dtype=np.complex64)
# complex conjugate of the second input vector
srvChannelConj = np.conj(srvChannel)
if shortFilt:
# precompute short FIR filter for decimation (all ones filter with length
# equal to the decimation factor)
dtaps = np.ones((ndecim + 1,))
else:
# precompute long FIR filter for decimation. (flat top filter of length
# 10*decimation factor).
dtaps = signal.firwin(10*ndecim + 1, 1. / ndecim, window='flattop')
dfilt = signal.dlti(dtaps, 1)
# loop over range bins
for k, lag in enumerate(np.arange(-1*rangeBins, 1)):
channelProduct = np.roll(srvChannelConj, lag)*refChannel
#decimate the product of the reference channel and the delayed surveillance channel
xambg[:,k,0] = signal.decimate(channelProduct, ndecim, ftype=dfilt)[0:freqBins]
# take the FFT along the first axis (Doppler)
# xambg = np.fft.fftshift(np.fft.fft(xambg, axis=0), axes=0)
xambg = np.fft.fftshift(fft(xambg, axis=0), axes=0)
return xambg
示例6: parallel
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def parallel(SS01, SS02):
"""
Returns the sum (or parallel connection of two systems). Given two state-space
models with the same output, but different input:
u1 --> SS01 --> y
u2 --> SS02 --> y
"""
if type(SS01) is not type(SS02):
raise NameError('The two input systems need to have the same size!')
if SS01.dt != SS02.dt:
raise NameError('DLTI systems do not have the same time-step!')
Nout = SS02.outputs
if Nout != SS01.outputs:
raise NameError('DLTI systems need to have the same number of output!')
# if type(SS01) is control.statesp.StateSpace:
# SStot=control.parallel(SS01,SS02)
# else:
# determine size of total system
Nst01, Nst02 = SS01.states, SS02.states
Nst = Nst01 + Nst02
Nin01, Nin02 = SS01.inputs, SS02.inputs
Nin = Nin01 + Nin02
# Build A,B matrix
A = np.zeros((Nst, Nst))
A[:Nst01, :Nst01] = SS01.A
A[Nst01:, Nst01:] = SS02.A
B = np.zeros((Nst, Nin))
B[:Nst01, :Nin01] = SS01.B
B[Nst01:, Nin01:] = SS02.B
# Build the rest
C = np.block([SS01.C, SS02.C])
D = np.block([SS01.D, SS02.D])
SStot = scsig.dlti(A, B, C, D, dt=SS01.dt)
return SStot
示例7: ss_to_scipy
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import dlti [as 別名]
def ss_to_scipy(ss):
"""
Converts to a scipy.signal linear time invariant system
Args:
ss (libss.ss): SHARPy state space object
Returns:
scipy.signal.dlti
"""
if ss.dt == None:
sys = scsig.lti(ss.A, ss.B, ss.C, ss.D)
else:
sys = scsig.dlti(ss.A, ss.B, ss.C, ss.D, dt=ss.dt)
return sys
# 1/0
# # check parallel connector
# Nout=2
# Nin01,Nin02=2,3
# Nst01,Nst02=4,2
# # build random systems
# fac=0.1
# A01,A02=fac*np.random.rand(Nst01,Nst01),fac*np.random.rand(Nst02,Nst02)
# B01,B02=np.random.rand(Nst01,Nin01),np.random.rand(Nst02,Nin02)
# C01,C02=np.random.rand(Nout,Nst01),np.random.rand(Nout,Nst02)
# D01,D02=np.random.rand(Nout,Nin01),np.random.rand(Nout,Nin02)
# dt=0.1
# SS01=scsig.StateSpace( A01,B01,C01,D01,dt=dt )
# SS02=scsig.StateSpace( A02,B02,C02,D02,dt=dt )
# # simulate
# NT=11
# U01,U02=np.random.rand(NT,Nin01),np.random.rand(NT,Nin02)
# # reference
# Y01,X01=simulate(SS01,U01)
# Y02,X02=simulate(SS02,U02)
# Yref=Y01+Y02
# # parallel
# SStot=parallel(SS01,SS02)
# Utot=np.block([U01,U02])
# Ytot,Xtot=simulate(SStot,Utot)
# # join method
# SStot=join(SS01,SS02)
# K=np.array([[1,2,3],[4,5,6]])
# SStot=join(K,SS02)
# SStot=join(SS02,K)
# K2=np.array([[10,20,30],[40,50,60]]).T
# Ktot=join(K,K2)