本文整理匯總了Python中scipy.signal.detrend方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.detrend方法的具體用法?Python signal.detrend怎麽用?Python signal.detrend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.detrend方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_data
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def get_data(filename):
data = xarray.open_dataset(
pjoin(CELER_PATH, 'climate/surface', filename), decode_times=False)
n_times = data[list(data.data_vars.keys())[0]].shape[0]
X = np.array(data[list(data.data_vars.keys())[0]]).reshape(n_times, -1)
# remove seasonality
period = 12
for m in range(period):
# TODO using sklearn for preprocessing would be an improvement
X[m::period] -= np.mean(X[m::period], axis=0)[None, :]
X[m::period] /= np.std(X[m::period], axis=0)[None, :]
if np.sum(np.isnan(X[m::period])) > 0:
X[m::period] = np.where(np.isnan(X[m::period]), 0, X[m::period])
# remove trend
X = detrend(X, axis=0, type='linear')
return X
示例2: test_dft_2d
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_dft_2d(self):
"""Test the discrete Fourier transform on 2D data"""
N = 16
da = xr.DataArray(np.random.rand(N,N), dims=['x','y'],
coords={'x':range(N),'y':range(N)}
)
ft = xrft.dft(da, shift=False)
npt.assert_almost_equal(ft.values, np.fft.fftn(da.values))
ft = xrft.dft(da, shift=False, window=True, detrend='constant')
dim = da.dims
window = np.hanning(N) * np.hanning(N)[:, np.newaxis]
da_prime = (da - da.mean(dim=dim)).values
npt.assert_almost_equal(ft.values, np.fft.fftn(da_prime*window))
da = xr.DataArray(np.random.rand(N,N), dims=['x','y'],
coords={'x':range(N,0,-1),'y':range(N,0,-1)}
)
assert (xrft.power_spectrum(da, shift=False,
density=True) >= 0.).all()
示例3: test_dft_4d
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_dft_4d(self):
"""Test the discrete Fourier transform on 2D data"""
N = 16
da = xr.DataArray(np.random.rand(N,N,N,N),
dims=['time','z','y','x'],
coords={'time':range(N),'z':range(N),
'y':range(N),'x':range(N)}
)
with pytest.raises(ValueError):
xrft.dft(da.chunk({'time':8}), dim=['y','x'], detrend='linear')
ft = xrft.dft(da, shift=False)
npt.assert_almost_equal(ft.values, np.fft.fftn(da.values))
da_prime = xrft.detrendn(da[:,0].values, [0,1,2]) # cubic detrend over time, y, and x
npt.assert_almost_equal(xrft.dft(da[:,0].drop('z'),
dim=['time','y','x'],
shift=False, detrend='linear'
).values,
np.fft.fftn(da_prime))
示例4: test_average_all_segments
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_average_all_segments(self):
np.random.seed(1234)
x = np.random.randn(1024)
fs = 1.0
window = 'hann'
nperseg = 16
noverlap = 8
# Compare twosided, because onesided welch doubles non-DC terms to
# account for power at negative frequencies. stft doesn't do this,
# because it breaks invertibility.
f, _, Z = stft(x, fs, window, nperseg, noverlap, padded=False,
return_onesided=False, boundary=None)
fw, Pw = welch(x, fs, window, nperseg, noverlap, return_onesided=False,
scaling='spectrum', detrend=False)
assert_allclose(f, fw)
assert_allclose(np.mean(np.abs(Z)**2, axis=-1), Pw)
示例5: test_roundtrip_float32
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_roundtrip_float32(self):
np.random.seed(1234)
settings = [('hann', 1024, 256, 128)]
for window, N, nperseg, noverlap in settings:
t = np.arange(N)
x = 10*np.random.randn(t.size)
x = x.astype(np.float32)
_, _, zz = stft(x, nperseg=nperseg, noverlap=noverlap,
window=window, detrend=None, padded=False)
tr, xr = istft(zz, nperseg=nperseg, noverlap=noverlap,
window=window)
msg = '{0}, {1}'.format(window, noverlap)
assert_allclose(t, t, err_msg=msg)
assert_allclose(x, xr, err_msg=msg, rtol=1e-4)
assert_(x.dtype == xr.dtype)
示例6: test_roundtrip_padded_signal
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_roundtrip_padded_signal(self):
np.random.seed(1234)
settings = [
('boxcar', 101, 10, 0),
('hann', 1000, 256, 128),
]
for window, N, nperseg, noverlap in settings:
t = np.arange(N)
x = 10*np.random.randn(t.size)
_, _, zz = stft(x, nperseg=nperseg, noverlap=noverlap,
window=window, detrend=None, padded=True)
tr, xr = istft(zz, noverlap=noverlap, window=window)
msg = '{0}, {1}'.format(window, noverlap)
# Account for possible zero-padding at the end
assert_allclose(t, tr[:t.size], err_msg=msg)
assert_allclose(x, xr[:x.size], err_msg=msg)
示例7: detrend
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def detrend(self, method='linear'):
""" Remove linear trend from each voxel
Args:
type: ('linear','constant', optional) type of detrending
Returns:
out: (Brain_Data) detrended Brain_Data instance
"""
if len(self.shape()) == 1:
raise ValueError('Make sure there is more than one image in order '
'to detrend.')
out = deepcopy(self)
out.data = detrend(out.data, type=method, axis=0)
return out
示例8: fft
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def fft(self):
'''Compute the fast Fourier transform using the multitaper method.
Returns
-------
fourier_coefficients : array, shape (n_time_windows, n_trials,
n_tapers, n_fft_samples,
n_signals)
'''
time_series = _add_axes(self.time_series)
time_series = _sliding_window(
time_series, window_size=self.n_time_samples_per_window,
step_size=self.n_time_samples_per_step, axis=0)
if self.detrend_type is not None:
time_series = detrend(time_series, type=self.detrend_type)
logger.info(self)
return _multitaper_fft(
self.tapers, time_series, self.n_fft_samples,
self.sampling_frequency).swapaxes(2, -1)
示例9: detrend_wrap
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def detrend_wrap(detrend_func):
"""
Wrapper function for `xrft.detrendn`.
"""
def func(a, axes=None):
if len(axes) > 3:
raise ValueError("Detrending is only supported up to "
"3 dimensions.")
if axes is None:
axes = tuple(range(a.ndim))
else:
if len(set(axes)) < len(axes):
raise ValueError("Duplicate axes are not allowed.")
for each_axis in axes:
if len(a.chunks[each_axis]) != 1:
raise ValueError('The axis along the detrending is upon '
'cannot be chunked.')
if len(axes) == 1:
return dsar.map_blocks(sps.detrend, a, axis=axes[0],
chunks=a.chunks, dtype=a.dtype
)
else:
for each_axis in range(a.ndim):
if each_axis not in axes:
if len(a.chunks[each_axis]) != a.shape[each_axis]:
raise ValueError("The axes other than ones to detrend "
"over should have a chunk length of 1.")
return dsar.map_blocks(detrend_func, a, axes,
chunks=a.chunks, dtype=a.dtype
)
return func
示例10: _apply_detrend
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def _apply_detrend(da, axis_num):
"""Wrapper function for applying detrending"""
if da.chunks:
func = detrend_wrap(detrendn)
da = xr.DataArray(func(da.data, axes=axis_num),
dims=da.dims, coords=da.coords)
else:
if da.ndim == 1:
da = xr.DataArray(sps.detrend(da),
dims=da.dims, coords=da.coords)
else:
da = detrendn(da, axes=axis_num)
return da
示例11: test_dft_3d_dask
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_dft_3d_dask(self, dask):
"""Test the discrete Fourier transform on 3D dask array data"""
N=16
da = xr.DataArray(np.random.rand(N,N,N), dims=['time','x','y'],
coords={'time':range(N),'x':range(N),
'y':range(N)}
)
if dask:
da = da.chunk({'time': 1})
daft = xrft.dft(da, dim=['x','y'], shift=False)
npt.assert_almost_equal(daft.values,
np.fft.fftn(da.chunk({'time': 1}).values,
axes=[1,2])
)
da = da.chunk({'x': 1})
with pytest.raises(ValueError):
xrft.dft(da, dim=['x'])
with pytest.raises(ValueError):
xrft.dft(da, dim='x')
da = da.chunk({'time':N})
daft = xrft.dft(da, dim=['time'],
shift=False, detrend='linear')
da_prime = sps.detrend(da, axis=0)
npt.assert_almost_equal(daft.values,
np.fft.fftn(da_prime, axes=[0])
)
npt.assert_array_equal(daft.values,
xrft.dft(da, dim='time',
shift=False, detrend='linear')
)
示例12: test_dft_real_1d
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_dft_real_1d(self, test_data_1d):
"""
Test the discrete Fourier transform function on one-dimensional data.
"""
da = test_data_1d
Nx = len(da)
dx = float(da.x[1] - da.x[0]) if 'x' in da.dims else 1
# defaults with no keyword args
ft = xrft.dft(da, real='x', detrend='constant')
# check that the frequency dimension was created properly
assert ft.dims == ('freq_x',)
# check that the coords are correct
freq_x_expected = np.fft.rfftfreq(Nx, dx)
npt.assert_allclose(ft['freq_x'], freq_x_expected)
# check that a spacing variable was created
assert ft['freq_x_spacing'] == freq_x_expected[1] - freq_x_expected[0]
# make sure the function is lazy
assert isinstance(ft.data, type(da.data))
# check that the Fourier transform itself is correct
data = (da - da.mean()).values
ft_data_expected = np.fft.rfft(data)
# because the zero frequency component is zero, there is a numerical
# precision issue. Fixed by setting atol
npt.assert_allclose(ft_data_expected, ft.values, atol=1e-14)
with pytest.raises(ValueError):
xrft.dft(da, real='y', detrend='constant')
示例13: test_cross_spectrum
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_cross_spectrum(self, dask):
"""Test the cross spectrum function"""
N = 16
dim = ['x','y']
da = xr.DataArray(np.random.rand(2,N,N), dims=['time','x','y'],
coords={'time':np.array(['2019-04-18', '2019-04-19'],
dtype='datetime64'),
'x':range(N), 'y':range(N)})
da2 = xr.DataArray(np.random.rand(2,N,N), dims=['time','x','y'],
coords={'time':np.array(['2019-04-18', '2019-04-19'],
dtype='datetime64'),
'x':range(N), 'y':range(N)})
if dask:
da = da.chunk({'time': 1})
da2 = da2.chunk({'time': 1})
daft = xrft.dft(da, dim=dim, shift=True, detrend='constant',
window=True)
daft2 = xrft.dft(da2, dim=dim, shift=True, detrend='constant',
window=True)
cs = xrft.cross_spectrum(da, da2, dim=dim, window=True, density=False,
detrend='constant')
npt.assert_almost_equal(cs.values, np.real(daft*np.conj(daft2)))
npt.assert_almost_equal(np.ma.masked_invalid(cs).mask.sum(), 0.)
cs = xrft.cross_spectrum(da, da2, dim=dim, shift=True, window=True,
detrend='constant')
test = (daft * np.conj(daft2)).real.values/N**4
dk = np.diff(np.fft.fftfreq(N, 1.))[0]
test /= dk**2
npt.assert_almost_equal(cs.values, test)
npt.assert_almost_equal(np.ma.masked_invalid(cs).mask.sum(), 0.)
示例14: test_spectrum_dim
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_spectrum_dim(self):
N = 16
da = xr.DataArray(np.random.rand(2,N,N), dims=['time','y','x'],
coords={'time':np.array(['2019-04-18', '2019-04-19'],
dtype='datetime64'),
'y':range(N),'x':range(N)}
)
ps = xrft.power_spectrum(da, dim='y', real='x', window=True,
density=False, detrend='constant')
npt.assert_array_equal(ps.values,
xrft.power_spectrum(da, dim=['y'],
real='x', window=True,
density=False,
detrend='constant').values)
da2 = xr.DataArray(np.random.rand(2,N,N), dims=['time','y','x'],
coords={'time':np.array(['2019-04-18', '2019-04-19'],
dtype='datetime64'),
'y':range(N), 'x':range(N)})
cs = xrft.cross_spectrum(da, da2, dim='y',
shift=True, window=True,
detrend='constant')
npt.assert_array_equal(xrft.cross_spectrum(da, da2, dim=['y'],
shift=True, window=True,
detrend='constant').values,
cs.values
)
assert ps.dims == ('time','freq_y','freq_x')
assert cs.dims == ('time','freq_y','x')
示例15: test_isotropic_ps_slope
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import detrend [as 別名]
def test_isotropic_ps_slope(N=512, dL=1., amp=1e1, s=-3.):
"""Test the spectral slope of isotropic power spectrum."""
theta = xr.DataArray(synthetic_field(N, dL, amp, s),
dims=['y', 'x'],
coords={'y':range(N), 'x':range(N)})
iso_ps = xrft.isotropic_power_spectrum(theta, detrend='constant',
density=True)
npt.assert_almost_equal(np.ma.masked_invalid(iso_ps[1:]).mask.sum(), 0.)
y_fit, a, b = xrft.fit_loglog(iso_ps.freq_r.values[4:],
iso_ps.values[4:])
npt.assert_allclose(a, s, atol=.1)