當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.deconvolve方法代碼示例

本文整理匯總了Python中scipy.signal.deconvolve方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.deconvolve方法的具體用法?Python signal.deconvolve怎麽用?Python signal.deconvolve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.deconvolve方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: poly2lsf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def poly2lsf(a):
    a = a / a[0]        
    A = np.r_[a, 0.0]
    B = A[::-1]
    P = A - B  
    Q = A + B  
    
    P = deconvolve(P, np.array([1.0, -1.0]))[0]
    Q = deconvolve(Q, np.array([1.0, 1.0]))[0]
    
    roots_P = np.roots(P)
    roots_Q = np.roots(Q)
    
    angles_P = np.angle(roots_P[::2])
    angles_Q = np.angle(roots_Q[::2])
    angles_P[angles_P < 0.0] += np.pi
    angles_Q[angles_Q < 0.0] += np.pi
    lsf = np.sort(np.r_[angles_P, angles_Q])
    return lsf 
開發者ID:shamidreza,項目名稱:pyvocoder,代碼行數:21,代碼來源:lpc.py

示例2: poly2lsf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def poly2lsf(a):
    a = a / a[0]        
    A = np.r_[a, 0.0]
    B = A[::-1]
    P = A - B  
    Q = A + B  
    
    P = deconvolve(P, np.array([1.0, -1.0]))[0]
    Q = deconvolve(Q, np.array([1.0, 1.0]))[0]
    
    roots_P = np.roots(P)
    roots_Q = np.roots(Q)
    
    angles_P = np.angle(roots_P[::2])
    angles_Q = np.angle(roots_Q[::2])
    angles_P[angles_P < 0.0] += np.pi
    angles_Q[angles_Q < 0.0] += np.pi
    lsf = np.sort(np.r_[angles_P, angles_Q])
    return lsf

# mel filterbank function modified from librosa 
開發者ID:ljuvela,項目名稱:ResGAN,代碼行數:23,代碼來源:get_mfcc.py

示例3: haroldpolydiv

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def haroldpolydiv(dividend, divisor):
    """
    Polynomial division wrapped around :func:`scipy.signal.deconvolve`
    function. Takes two arguments and divides the first
    by the second.

    Parameters
    ----------
    dividend : (n,) array_like
        The polynomial to be divided
    divisor : (m,) array_like
        The polynomial that divides

    Returns
    -------
    factor : ndarray
        The resulting polynomial coeffients of the factor
    remainder : ndarray
        The resulting polynomial coefficients of the remainder

    Examples
    --------

    >>> a = np.array([2, 3, 4 ,6])
    >>> b = np.array([1, 3, 6])
    >>> haroldpolydiv(a, b)
    (array([ 2., -3.]), array([ 1., 24.]))
    >>> c = np.array([1, 3, 3, 1])
    >>> d = np.array([1, 2, 1])
    >>> haroldpolydiv(c, d)
    (array([1., 1.]), array([], dtype=float64))

    """
    h_factor, h_remainder = (np.trim_zeros(x, 'f') for x
                             in sig.deconvolve(dividend, divisor))

    return h_factor, h_remainder 
開發者ID:ilayn,項目名稱:harold,代碼行數:39,代碼來源:_polynomial_ops.py

示例4: lpc_to_lsf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def lpc_to_lsf(all_lpc):
    if len(all_lpc.shape) < 2:
        all_lpc = all_lpc[None]
    order = all_lpc.shape[1] - 1
    all_lsf = np.zeros((len(all_lpc), order))
    for i in range(len(all_lpc)):
        lpc = all_lpc[i]
        lpc1 = np.append(lpc, 0)
        lpc2 = lpc1[::-1]
        sum_filt = lpc1 + lpc2
        diff_filt = lpc1 - lpc2

        if order % 2 != 0:
            deconv_diff, _ = sg.deconvolve(diff_filt, [1, 0, -1])
            deconv_sum = sum_filt
        else:
            deconv_diff, _ = sg.deconvolve(diff_filt, [1, -1])
            deconv_sum, _ = sg.deconvolve(sum_filt, [1, 1])

        roots_diff = np.roots(deconv_diff)
        roots_sum = np.roots(deconv_sum)
        angle_diff = np.angle(roots_diff[::2])
        angle_sum = np.angle(roots_sum[::2])
        lsf = np.sort(np.hstack((angle_diff, angle_sum)))
        if len(lsf) != 0:
            all_lsf[i] = lsf
    return np.squeeze(all_lsf) 
開發者ID:kastnerkyle,項目名稱:tools,代碼行數:29,代碼來源:audio_tools.py

示例5: test_basic

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def test_basic(self):
        # From docstring example
        original = [0, 1, 0, 0, 1, 1, 0, 0]
        impulse_response = [2, 1]
        recorded = [0, 2, 1, 0, 2, 3, 1, 0, 0]
        recovered, remainder = signal.deconvolve(recorded, impulse_response)
        assert_allclose(recovered, original) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:9,代碼來源:test_signaltools.py

示例6: poly2lsf

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def poly2lsf(a):
    """Prediction polynomial to line spectral frequencies.

    converts the prediction polynomial specified by A,
    into the corresponding line spectral frequencies, LSF.
    normalizes the prediction polynomial by A(1).

    .. doctest::

        >>> from spectrum import poly2lsf
        >>> a = [1.0000,  0.6149, 0.9899, 0.0000 ,0.0031, -0.0082]
        >>> lsf = poly2lsf(a)
        >>> lsf =  array([0.7842, 1.5605, 1.8776, 1.8984, 2.3593])

    .. seealso:: lsf2poly, poly2rc, poly2qc, rc2is
    """

    #Line spectral frequencies are not defined for complex polynomials.

    # Normalize the polynomial

    a = numpy.array(a)
    if a[0] != 1:
        a/=a[0]

    if max(numpy.abs(numpy.roots(a))) >= 1.0:
        error('The polynomial must have all roots inside of the unit circle.');


    # Form the sum and differnce filters

    p  = len(a)-1   # The leading one in the polynomial is not used
    a1 = numpy.concatenate((a, numpy.array([0])))
    a2 = a1[-1::-1]
    P1 = a1 - a2        # Difference filter
    Q1 = a1 + a2        # Sum Filter

    # If order is even, remove the known root at z = 1 for P1 and z = -1 for Q1
    # If odd, remove both the roots from P1

    if p%2: # Odd order
        P, r = deconvolve(P1,[1, 0 ,-1])
        Q = Q1
    else:          # Even order
        P, r = deconvolve(P1, [1, -1])
        Q, r = deconvolve(Q1, [1,  1])

    rP  = numpy.roots(P)
    rQ  = numpy.roots(Q)

    aP  = numpy.angle(rP[1::2])
    aQ  = numpy.angle(rQ[1::2])

    lsf = sorted(numpy.concatenate((-aP,-aQ)))

    return lsf 
開發者ID:cokelaer,項目名稱:spectrum,代碼行數:58,代碼來源:linear_prediction.py

示例7: deconvolve

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import deconvolve [as 別名]
def deconvolve(num, den, n=None):
    """Deconvolves divisor out of signal, division of polynomials for n terms

    calculates den^{-1} * num

    Parameters
    ----------
    num : array_like
        signal or lag polynomial
    denom : array_like
        coefficients of lag polynomial (linear filter)
    n : None or int
        number of terms of quotient

    Returns
    -------
    quot : array
        quotient or filtered series
    rem : array
        remainder

    Notes
    -----
    If num is a time series, then this applies the linear filter den^{-1}.
    If both num and den are both lagpolynomials, then this calculates the
    quotient polynomial for n terms and also returns the remainder.

    This is copied from scipy.signal.signaltools and added n as optional
    parameter.

    """
    num = np.atleast_1d(num)
    den = np.atleast_1d(den)
    N = len(num)
    D = len(den)
    if D > N and n is None:
        quot = []
        rem = num
    else:
        if n is None:
            n = N-D+1
        input = np.zeros(n, float)
        input[0] = 1
        quot = signal.lfilter(num, den, input)
        num_approx = signal.convolve(den, quot, mode='full')
        if len(num) < len(num_approx):  # 1d only ?
            num = np.concatenate((num, np.zeros(len(num_approx)-len(num))))
        rem = num - num_approx
    return quot, rem 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:51,代碼來源:arima_process.py


注:本文中的scipy.signal.deconvolve方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。