當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.convolve2d方法代碼示例

本文整理匯總了Python中scipy.signal.convolve2d方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.convolve2d方法的具體用法?Python signal.convolve2d怎麽用?Python signal.convolve2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.convolve2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_diffraction_test_image

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def get_diffraction_test_image(self, dtype=np.float32):
        image_x, image_y = self.image_x, self.image_y
        cx, cy = image_x / 2, image_y / 2
        image = np.zeros((image_y, image_x), dtype=np.float32)
        iterator = zip(self._x_list, self._y_list, self._intensity_list)
        for x, y, i in iterator:
            if self.diff_intensity_reduction is not False:
                dr = np.hypot(x - cx, y - cy)
                i = self._get_diff_intensity_reduction(dr, i)
            image[y, x] = i
        disk = morphology.disk(self.disk_r, dtype=dtype)
        image = convolve2d(image, disk, mode="same")
        if self.rotation != 0:
            image = rotate(image, self.rotation, reshape=False)
        if self.blur != 0:
            image = gaussian_filter(image, self.blur)
        if self._background_lorentz_width is not False:
            image += self._get_background_lorentz()
        if self.intensity_noise is not False:
            noise = np.random.random((image_y, image_x)) * self.intensity_noise
            image += noise
        return image 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:24,代碼來源:make_diffraction_test_data.py

示例2: init_parameters

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def init_parameters(self):
        # Init weights
        if self.init_method == 'x': # Xavier            
            torch.nn.init.xavier_uniform_(self.weight)
        elif self.init_method == 'k': # Kaiming
            torch.nn.init.kaiming_uniform_(self.weight)
        elif self.init_method == 'p': # Poisson
            mu=self.kernel_size[0]/2 
            dist = poisson(mu)
            x = np.arange(0, self.kernel_size[0])
            y = np.expand_dims(dist.pmf(x),1)
            w = signal.convolve2d(y, y.transpose(), 'full')
            w = torch.Tensor(w).type_as(self.weight)
            w = torch.unsqueeze(w,0)
            w = torch.unsqueeze(w,1)
            w = w.repeat(self.out_channels, 1, 1, 1)
            w = w.repeat(1, self.in_channels, 1, 1)
            self.weight.data = w + torch.rand(w.shape)
            
        # Init bias
        self.bias = torch.nn.Parameter(torch.zeros(self.out_channels)+0.01)
        
        
# Non-negativity enforcement class 
開發者ID:abdo-eldesokey,項目名稱:nconv,代碼行數:26,代碼來源:nconv.py

示例3: navg_layer

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def navg_layer(self, kernel_size, init_stdev=0.5, in_channels=1, out_channels=1, initalizer='x', pos=False, groups=1):
        
        navg = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1, 
                         padding=(kernel_size[0]//2, kernel_size[1]//2), bias=False, groups=groups)
        
        weights = navg.weight            
        
        if initalizer == 'x': # Xavier            
            torch.nn.init.xavier_uniform(weights)
        elif initalizer == 'k':    
            torch.nn.init.kaiming_uniform(weights)
        elif initalizer == 'p':    
            mu=kernel_size[0]/2 
            dist = poisson(mu)
            x = np.arange(0, kernel_size[0])
            y = np.expand_dims(dist.pmf(x),1)
            w = signal.convolve2d(y, y.transpose(), 'full')
            w = torch.FloatTensor(w).cuda()
            w = torch.unsqueeze(w,0)
            w = torch.unsqueeze(w,1)
            w = w.repeat(out_channels, 1, 1, 1)
            w = w.repeat(1, in_channels, 1, 1)
            weights.data = w + torch.rand(w.shape).cuda()
         
        return navg 
開發者ID:abdo-eldesokey,項目名稱:nconv,代碼行數:27,代碼來源:unguided_network.py

示例4: py_conv_scipy

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def py_conv_scipy(img, kern, mode, subsample):
    assert img.shape[1] == kern.shape[1]
    if mode == 'valid':
        outshp = (img.shape[0], kern.shape[0],
                img.shape[2] - kern.shape[2] + 1,
                img.shape[3] - kern.shape[3] + 1)
    else:
        outshp = (img.shape[0], kern.shape[0],
                img.shape[2] + kern.shape[2] - 1,
                img.shape[3] + kern.shape[3] - 1)
    out = numpy.zeros(outshp, dtype='float32')
    for b in xrange(out.shape[0]):
        for k in xrange(out.shape[1]):
            for s in xrange(img.shape[1]):
                #convolve2d or correlate
                out[b, k, :, :] += convolve2d(img[b, s, :, :],
                                  kern[k, s, :, :],
                                  mode)
    return out[:, :, ::subsample[0], ::subsample[1]] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:21,代碼來源:test_conv_cuda_ndarray.py

示例5: test_marginal_convolution

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def test_marginal_convolution():
    rng = np.random.RandomState(42)
    convolution_filters = rng.randn(6, 4, 5).astype(np.float32)
    images = np.arange(
        3 * 2 * 10 * 10).reshape(3, 2, 10, 10).astype(np.float32)

    for border_mode in ['full', 'valid']:
        conv = MarginalConvolution(convolution_filters,
                                   border_mode=border_mode,
                                   activation=None)
        conv_func = theano.function([conv.input_],
                                    conv.expression_)
        convolved = conv_func(images)
        convolutions = np.array([
                [[convolve2d(img, convolution_filter,
                             mode=border_mode)
                  for convolution_filter in convolution_filters]
                 for img in imgs]
                for imgs in images])
        convolutions = convolutions.reshape(images.shape[0], -1,
                                            convolutions.shape[-2],
                                            convolutions.shape[-1])
        assert_array_almost_equal(convolved, convolutions, decimal=3) 
開發者ID:sklearn-theano,項目名稱:sklearn-theano,代碼行數:25,代碼來源:test_base.py

示例6: gridsmooth

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def gridsmooth(Z, span):
    """ Smooths values on 2D rectangular grid
    """
    import warnings
    warnings.filterwarnings('ignore')

    x = np.linspace(-2.*span, 2.*span, 2.*span + 1.)
    y = np.linspace(-2.*span, 2.*span, 2.*span + 1.)
    (X, Y) = np.meshgrid(x, y)
    mu = np.array([0., 0.])
    sigma = np.diag([span, span])**2.
    F = gauss2(X, Y, mu, sigma)
    F = F/np.sum(F)
    W = np.ones(Z.shape)
    Z = _signal.convolve2d(Z, F, 'same')
    W = _signal.convolve2d(W, F, 'same')
    Z = Z/W
    return Z 
開發者ID:rmodrak,項目名稱:seisflows,代碼行數:20,代碼來源:array.py

示例7: test_fillvalue_deprecations

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def test_fillvalue_deprecations(self):
        # Deprecated 2017-07, scipy version 1.0.0
        with suppress_warnings() as sup:
            sup.filter(np.ComplexWarning, "Casting complex values to real")
            r = sup.record(DeprecationWarning, "could not cast `fillvalue`")
            convolve2d([[1]], [[1, 2]], fillvalue=1j)
            assert_(len(r) == 1)
            warnings.filterwarnings(
                "error", message="could not cast `fillvalue`",
                category=DeprecationWarning)
            assert_raises(DeprecationWarning, convolve2d, [[1]], [[1, 2]],
                          fillvalue=1j)

        with suppress_warnings():
            warnings.filterwarnings(
                "always", message="`fillvalue` must be scalar or an array ",
                category=DeprecationWarning)
            assert_warns(DeprecationWarning, convolve2d, [[1]], [[1, 2]],
                         fillvalue=[1, 2])
            warnings.filterwarnings(
                "error", message="`fillvalue` must be scalar or an array ",
                category=DeprecationWarning)
            assert_raises(DeprecationWarning, convolve2d, [[1]], [[1, 2]],
                          fillvalue=[1, 2]) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:26,代碼來源:test_signaltools.py

示例8: test_valid_mode2

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def test_valid_mode2(self):
        # See gh-5897
        e = [[1, 2, 3], [3, 4, 5]]
        f = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]]
        expected = [[62, 80, 98, 116, 134]]

        out = convolve2d(e, f, 'valid')
        assert_array_equal(out, expected)

        out = convolve2d(f, e, 'valid')
        assert_array_equal(out, expected)

        e = [[1 + 1j, 2 - 3j], [3 + 1j, 4 + 0j]]
        f = [[2 - 1j, 3 + 2j, 4 + 0j], [4 - 0j, 5 + 1j, 6 - 3j]]
        expected = [[27 - 1j, 46. + 2j]]

        out = convolve2d(e, f, 'valid')
        assert_array_equal(out, expected)

        # See gh-5897
        out = convolve2d(f, e, 'valid')
        assert_array_equal(out, expected) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:test_signaltools.py

示例9: extract_sift_patches

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def extract_sift_patches(self, image, grid_h, grid_w):
        """extracts the sift descriptor of patches
           in positions (grid_h, grid_w) in the image"""
        h, w = image.shape
        n_patches = grid_h.size
        feat_arr = np.zeros((n_patches, n_samples * n_angles))

        # calculate gradient
        gh, gw = gen_dgauss(self.sigma)
        ih = signal.convolve2d(image, gh, mode='same')
        iw = signal.convolve2d(image, gw, mode='same')
        i_mag = np.sqrt(ih ** 2 + iw ** 2)
        i_theta = np.arctan2(ih, iw)
        i_orient = np.zeros((n_angles, h, w))
        for i in range(n_angles):
            i_orient[i] = i_mag * np.maximum(np.cos(i_theta - angles[i]) ** alpha, 0)
        for i in range(n_patches):
            curr_feature = np.zeros((n_angles, n_samples))
            for j in range(n_angles):
                curr_feature[j] = np.dot(self.weights, i_orient[j, grid_h[i]:grid_h[i] + self.ps,
                                                      grid_w[i]:grid_w[i] + self.ps].flatten())
            feat_arr[i] = curr_feature.flatten()
        # feaArr contains each descriptor in a row
        feat_arr = self.normalize_sift(feat_arr)
        return feat_arr 
開發者ID:ektormak,項目名稱:Lyssandra,代碼行數:27,代碼來源:dsift.py

示例10: CFAR_2D

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def CFAR_2D(X, fw, gw, thresh = None):
    '''constant false alarm rate target detection
    
    Parameters:
        fw: CFAR kernel width 
        gw: number of guard cells
        thresh: detection threshold
    
    Returns:
        X with CFAR filter applied'''

    Tfilt = np.ones((fw,fw))/(fw**2 - gw**2)
    e1 = (fw - gw)//2
    e2 = fw - e1 + 1
    Tfilt[e1:e2, e1:e2] = 0

    CR = normalize(X) / (signal.convolve2d(X, Tfilt, mode='same', boundary='wrap') + 1e-10)
    if thresh is None:
        return CR
    else:
        return CR > thresh 
開發者ID:Max-Manning,項目名稱:passiveRadar,代碼行數:23,代碼來源:target_detection.py

示例11: compute_pairwise_distribution

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def compute_pairwise_distribution(joint, cond_j):
    """
    This computes a single histogram for a pair of (joint, cond_joint), and applies gaussian smoothing
    :param joint: e.g. 'lsho'
    :param cond_j: e.g. 'nose'
    :return: 120 x 180 pairwise distribution
    """
    hp_height = y_train.shape[1]
    hp_width = y_train.shape[2]
    pd = np.zeros([hp_height * 2, hp_width * 2])  # the pairwise distribution is twice the size of the heat map
    # print(pd.shape)
    for i in range(y_train.shape[0]):  # for every single image, we note the distance between the joint and cond_j
        img_j = y_train[i, :, :, joint_ids.index(joint)]
        img_cj = y_train[i, :, :, joint_ids.index(cond_j)]
        xj, yj = np.where(img_j == np.max(img_j))
        xcj, ycj = np.where(img_cj == np.max(img_cj))
        pd[hp_height + (xj - xcj), hp_width + (yj - ycj)] += 1  # count for the histgram
    pd = pd / np.float32(np.sum(pd))
    pd = signal.convolve2d(pd, kernel, mode='same', boundary='fill', fillvalue=0)
    return pd 
開發者ID:max-andr,項目名稱:joint-cnn-mrf,代碼行數:22,代碼來源:prepare_pairwise_distribution.py

示例12: update_rows_and_gol_state

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def update_rows_and_gol_state(self):
    # Update `rows` (the state of the 2D cellular automaton).
    rule_index = signal.convolve2d(self.row[None, :],
                                   self.row_neighbors[None, :],
                                   mode='same', boundary='wrap')
    self.row = self.rule_kernel[rule_index[0]]
    transfer_row = self.rows[:1]
    self.rows = np.concatenate((
        self.rows[1:],
        self.row[None, self.row_padding:-self.row_padding]
    ))

    # Update `gol_state` (the state of the 3D cellular automaton).
    num_neighbors = signal.convolve2d(self.gol_state, self.gol_neighbors,
                                      mode='same', boundary='wrap')
    self.gol_state = np.logical_or(num_neighbors == 3,
                                   np.logical_and(num_neighbors == 2,
                                                  self.gol_state)
                                   ).astype(np.uint8)

    self.gol_state = np.concatenate((
        np.zeros((1, self.gol_state_width), np.uint8),
        self.gol_state[1:-1],
        transfer_row
    )) 
開發者ID:elliotwaite,項目名稱:rule-30-and-game-of-life,代碼行數:27,代碼來源:rule_30_and_game_of_life.py

示例13: _execute

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def _execute(self, x):
        is_2d = x.ndim==2
        output_shape, input_shape = self._output_shape, self._input_shape
        filters = self.filters
        nfilters = filters.shape[0]

        # XXX depends on convolution
        y = numx.empty((x.shape[0], nfilters,
                        output_shape[0], output_shape[1]), dtype=self.dtype)
        for n_im, im in enumerate(x):
            if is_2d:
                im = im.reshape(input_shape)
            for n_flt, flt in enumerate(filters):
                if self.approach == 'fft':
                    y[n_im,n_flt,:,:] = signal.fftconvolve(im, flt, mode=self.mode)
                elif self.approach == 'linear':
                    y[n_im,n_flt,:,:] = signal.convolve2d(im, flt,
                                                          mode=self.mode,
                                                          boundary=self.boundary,
                                                          fillvalue=self.fillvalue)

        # reshape if necessary
        if self.output_2d:
            y.resize((y.shape[0], self.output_dim))

        return y 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:28,代碼來源:convolution_nodes.py

示例14: airy_convolve

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def airy_convolve(array,radius,kernel_radius=25):
    kernel = generate_kernel(radius * SPECTRUM , kernel_radius)

    out = np.zeros((array.shape[0],array.shape[1],3))
    for i in range(3):
        out[:,:,i] = convolve2d(array[:,:,i],kernel[:,:,i],mode='same',boundary='symm')

    return out 
開發者ID:rantonels,項目名稱:starless,代碼行數:10,代碼來源:bloom.py

示例15: kernelFromTrajectory

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve2d [as 別名]
def kernelFromTrajectory(x):
    h = 5 - log(rand()) / 0.15
    h = round(min([h, 27])).astype(int)
    h = h + 1 - h % 2
    w = h
    k = zeros((h, w))

    xmin = min(x[0])
    xmax = max(x[0])
    ymin = min(x[1])
    ymax = max(x[1])
    xthr = arange(xmin, xmax, (xmax - xmin) / w)
    ythr = arange(ymin, ymax, (ymax - ymin) / h)

    for i in range(1, xthr.size):
        for j in range(1, ythr.size):
            idx = (
                (x[0, :] >= xthr[i - 1])
                & (x[0, :] < xthr[i])
                & (x[1, :] >= ythr[j - 1])
                & (x[1, :] < ythr[j])
            )
            k[i - 1, j - 1] = sum(idx)
    if sum(k) == 0:
        return
    k = k / sum(k)
    k = convolve2d(k, fspecial_gauss(3, 1), "same")
    k = k / sum(k)
    return k 
開發者ID:cszn,項目名稱:KAIR,代碼行數:31,代碼來源:utils_deblur.py


注:本文中的scipy.signal.convolve2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。