本文整理匯總了Python中scipy.signal.convolve方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.convolve方法的具體用法?Python signal.convolve怎麽用?Python signal.convolve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.convolve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: comp_induce_potential
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def comp_induce_potential(self):
"""
Compute the induce potential corresponding to the density change
calculated in get_spatial_density
"""
from scipy.signal import convolve
Nx, Ny, Nz = self.mesh[0].size, self.mesh[1].size, self.mesh[2].size
grid = np.zeros((Nx, Ny, Nz), dtype = np.float64)
factor = self.dr[0]*self.dr[1]*self.dr[2]/(np.sqrt(2*np.pi)**3)
libnao.comp_spatial_grid_pot(
self.dr.ctypes.data_as(POINTER(c_double)),
self.mesh[0].ctypes.data_as(POINTER(c_double)),
self.mesh[1].ctypes.data_as(POINTER(c_double)),
self.mesh[2].ctypes.data_as(POINTER(c_double)),
grid.ctypes.data_as(POINTER(c_double)),
c_int(Nx), c_int(Ny), c_int(Nz))
return convolve(grid, self.dn_spatial, mode="same", method="fft")*factor
示例2: convolve2d
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def convolve2d(in1, in2, mode='full'):
"""
note only support H * W * N * 1 convolve 2d
"""
in1 = in1.transpose(2, 3, 0, 1) # to N * C * H * W
in2 = in2.transpose(2, 3, 0, 1)
out_c, _, kh, kw = in2.shape
n, _, h, w = in1.shape
if mode == 'full':
ph, pw = kh-1, kw-1
out_h, out_w = h-kh+1+ph*2, w-kw+1+pw*2# TODO
elif mode == 'valid':
ph, pw = 0, 0
out_h, out_w = h-kh+1, w-kw+1 # TODO
else:
raise NotImplementedError
y = cp.empty((n, out_c, out_h, out_w), dtype=in1.dtype)
col = im2col_gpu(in1, kh, kw, 1, 1, ph, pw)
y = cp.tensordot(
col, in2, ((1, 2, 3), (1, 2, 3))).astype(in1.dtype, copy=False)
y = cp.rollaxis(y, 3, 1)
return y.transpose(2, 3, 0, 1)
示例3: test_valid_mode2
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_valid_mode2(self):
# See gh-5897
a = [1, 2, 3, 6, 5, 3]
b = [2, 3, 4, 5, 3, 4, 2, 2, 1]
expected = [70, 78, 73, 65]
out = convolve(a, b, 'valid')
assert_array_equal(out, expected)
out = convolve(b, a, 'valid')
assert_array_equal(out, expected)
a = [1 + 5j, 2 - 1j, 3 + 0j]
b = [2 - 3j, 1 + 0j]
expected = [2 - 3j, 8 - 10j]
out = convolve(a, b, 'valid')
assert_array_equal(out, expected)
out = convolve(b, a, 'valid')
assert_array_equal(out, expected)
示例4: sample
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def sample(self, x_instrument, wl_hi, rdn_hi):
"""Apply instrument sampling to a radiance spectrum, returning predicted measurement."""
if self.calibration_fixed and all((self.wl_init - wl_hi) < wl_tol):
return rdn_hi
wl, fwhm = self.calibration(x_instrument)
if rdn_hi.ndim == 1:
return resample_spectrum(rdn_hi, wl_hi, wl, fwhm)
else:
resamp = []
# The "fast resample" option approximates a complete resampling
# by a convolution with a uniform FWHM.
if self.fast_resample:
for i, r in enumerate(rdn_hi):
ssrf = spectral_response_function(np.arange(-10, 11), 0, fwhm[0])
blur = convolve(r, ssrf, mode='same')
resamp.append(interp1d(wl_hi, blur)(wl))
else:
for i, r in enumerate(rdn_hi):
r2 = resample_spectrum(r, wl_hi, wl, fwhm)
resamp.append(r2)
return np.array(resamp)
示例5: test_convolve_generalization
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_convolve_generalization():
ag_convolve = autograd.scipy.signal.convolve
A_35 = R(3, 5)
A_34 = R(3, 4)
A_342 = R(3, 4, 2)
A_2543 = R(2, 5, 4, 3)
A_24232 = R(2, 4, 2, 3, 2)
for mode in ['valid', 'full']:
assert npo.allclose(ag_convolve(A_35, A_34, axes=([1], [0]), mode=mode)[1, 2],
sp_convolve(A_35[1,:], A_34[:, 2], mode))
assert npo.allclose(ag_convolve(A_35, A_34, axes=([],[]), dot_axes=([0], [0]), mode=mode),
npo.tensordot(A_35, A_34, axes=([0], [0])))
assert npo.allclose(ag_convolve(A_35, A_342, axes=([1],[2]),
dot_axes=([0], [0]), mode=mode)[2],
sum([sp_convolve(A_35[i, :], A_342[i, 2, :], mode)
for i in range(3)]))
assert npo.allclose(ag_convolve(A_2543, A_24232, axes=([1, 2],[2, 4]),
dot_axes=([0, 3], [0, 3]), mode=mode)[2],
sum([sum([sp_convolve(A_2543[i, :, :, j],
A_24232[i, 2, :, j, :], mode)
for i in range(2)]) for j in range(3)]))
示例6: comp_induce_field
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def comp_induce_field(self):
"""
Compute the induce Electric field corresponding to the density change
calculated in get_spatial_density
"""
from scipy.signal import convolve
Nx, Ny, Nz = self.mesh[0].size, self.mesh[1].size, self.mesh[2].size
Efield = np.zeros((3, Nx, Ny, Nz), dtype = np.complex64)
grid = np.zeros((Nx, Ny, Nz), dtype = np.float64)
factor = self.dr[0]*self.dr[1]*self.dr[2]/(np.sqrt(2*np.pi)**3)
for xyz in range(3):
grid.fill(0.0)
libnao.comp_spatial_grid(
self.dr.ctypes.data_as(POINTER(c_double)),
self.mesh[0].ctypes.data_as(POINTER(c_double)),
self.mesh[1].ctypes.data_as(POINTER(c_double)),
self.mesh[2].ctypes.data_as(POINTER(c_double)),
c_int(xyz+1),
grid.ctypes.data_as(POINTER(c_double)),
c_int(Nx), c_int(Ny), c_int(Nz))
Efield[xyz, :, :, :] = convolve(grid, self.dn_spatial,
mode="same", method="fft")*factor
return Efield
示例7: _smooth
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def _smooth(data, sd):
from scipy.signal import gaussian
from scipy.signal import convolve
n_bins = data.shape[0]
w = n_bins - 1 if n_bins % 2 == 0 else n_bins
window = gaussian(w, std=sd)
for j in range(data.shape[1]):
data[:, j] = convolve(data[:, j], window, mode='same', method='auto')
return data
示例8: velocity_smoothed
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def velocity_smoothed(pos, freq, smooth_size=0.03):
"""
Compute wheel velocity from uniformly sampled wheel data
Parameters
----------
pos : array_like
Array of wheel positions
smooth_size : float
Size of Gaussian smoothing window in seconds
freq : float
Sampling frequency of the data
Returns
-------
vel : np.ndarray
Array of velocity values
acc : np.ndarray
Array of acceleration values
"""
# Define our smoothing window with an area of 1 so the units won't be changed
stdSamps = np.round(smooth_size * freq) # Standard deviation relative to sampling frequency
N = stdSamps * 6 # Number of points in the Gaussian
gauss_std = (N - 1) / 6 # @fixme magic number everywhere!
win = gaussian(N, gauss_std)
win = win / win.sum() # Normalize amplitude
# Convolve and multiply by sampling frequency to restore original units
vel = np.insert(convolve(np.diff(pos), win, mode='same'), 0, 0) * freq
acc = np.insert(convolve(np.diff(vel), win, mode='same'), 0, 0) * freq
return vel, acc
示例9: test_direct2D
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_direct2D():
"""Check consistency of analytical 2D Green's function with FD modelling
"""
inputdata = np.load(inputfile2d)
# Receivers
r = inputdata['r']
nr = r.shape[1]
# Virtual points
vs = inputdata['vs']
# Time axis
t = inputdata['t']
dt, nt = t[1] - t[0], len(t)
# FD GF
G0FD = inputdata['G0sub']
wav = inputdata['wav']
wav_c = np.argmax(wav)
G0FD = np.apply_along_axis(convolve, 0, G0FD, wav, mode='full')
G0FD = G0FD[wav_c:][:nt]
# Analytic GF
trav = np.sqrt((vs[0] - r[0]) ** 2 + (vs[1] - r[1]) ** 2) / vel
G0ana = directwave(wav, trav, nt, dt, nfft=nt, derivative=False)
# Differentiate to get same response as in FD modelling
G0ana = np.diff(G0ana, axis=0)
G0ana = np.vstack([G0ana, np.zeros(nr)])
assert_array_almost_equal(G0FD / np.max(np.abs(G0FD)),
G0ana / np.max(np.abs(G0ana)), decimal=1)
示例10: test_direct3D
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_direct3D():
"""Check consistency of analytical 3D Green's function with FD modelling
"""
inputdata = np.load(inputfile3d)
# Receivers
r = inputdata['r']
nr = r.shape[0]
# Virtual points
vs = inputdata['vs']
# Time axis
t = inputdata['t']
dt, nt = t[1] - t[0], len(t)
# FD GF
G0FD = inputdata['G0'][:, :nr]
wav = inputdata['wav']
wav_c = np.argmax(wav)
G0FD = np.apply_along_axis(convolve, 0, G0FD, wav, mode='full')
G0FD = G0FD[wav_c:][:nt]
# Analytic GF
dist = np.sqrt((vs[0] - r[:, 0]) ** 2 +
(vs[1] - r[:, 1]) ** 2 +
(vs[2] - r[:, 2]) ** 2)
trav = dist / vel
G0ana = directwave(wav, trav, nt, dt, nfft=nt, dist=dist,
kind='3d', derivative=False)
# Differentiate to get same response as in FD modelling
G0ana = np.diff(G0ana, axis=0)
G0ana = np.vstack([G0ana, np.zeros(nr)])
assert_array_almost_equal(G0FD / np.max(np.abs(G0FD)),
G0ana / np.max(np.abs(G0ana)), decimal=1)
示例11: _matvec
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def _matvec(self, x):
x = np.reshape(x, self.dims)
y = convolve(x, self.h, mode='same', method=self.method)
y = y.ravel()
return y
示例12: __call__
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def __call__(self, pkg):
pkg = format_package(pkg)
wav = pkg['chunk']
# sample an ir_file
ir_file = self.sample_IR()
IR, p_max = self.load_IR(ir_file, self.ir_fmt)
IR = IR.astype(np.float32)
wav = wav.data.numpy().reshape(-1)
Ex = np.dot(wav, wav)
wav = wav.astype(np.float32).reshape(-1)
# wav = wav / np.max(np.abs(wav))
# rev = signal.fftconvolve(wav, IR, mode='full')
rev = signal.convolve(wav, IR, mode='full').reshape(-1)
Er = np.dot(rev, rev)
# rev = rev / np.max(np.abs(rev))
# IR delay compensation
rev = self.shift(rev, -p_max)
if Er > 0:
Eratio = np.sqrt(Ex / Er)
else:
Eratio = 1.0
#rev = rev / np.max(np.abs(rev))
# Trim rev signal to match clean length
rev = rev[:wav.shape[0]]
rev = Eratio * rev
rev = torch.FloatTensor(rev)
if self.report:
if 'report' not in pkg:
pkg['report'] = {}
pkg['report']['ir_file'] = ir_file
pkg['chunk'] = rev
return pkg
示例13: fftconvolve_old
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def fftconvolve_old(in1, in2, in3=None, mode="full"):
"""Convolve two N-dimensional arrays using FFT. See convolve.
copied from scipy.signal.signaltools, but here used to try out inverse filter
doesn't work or I can't get it to work
2010-10-23:
looks ok to me for 1d,
from results below with padded data array (fftp)
but it doesn't work for multidimensional inverse filter (fftn)
original signal.fftconvolve also uses fftn
"""
s1 = array(in1.shape)
s2 = array(in2.shape)
complex_result = (np.issubdtype(in1.dtype, np.complex) or
np.issubdtype(in2.dtype, np.complex))
size = s1+s2-1
# Always use 2**n-sized FFT
fsize = 2**np.ceil(np.log2(size))
IN1 = fftn(in1,fsize)
#IN1 *= fftn(in2,fsize) #JP: this looks like the only change I made
IN1 /= fftn(in2,fsize) # use inverse filter
# note the inverse is elementwise not matrix inverse
# is this correct, NO doesn't seem to work for VARMA
fslice = tuple([slice(0, int(sz)) for sz in size])
ret = ifftn(IN1)[fslice].copy()
del IN1
if not complex_result:
ret = ret.real
if mode == "full":
return ret
elif mode == "same":
if product(s1,axis=0) > product(s2,axis=0):
osize = s1
else:
osize = s2
return _centered(ret,osize)
elif mode == "valid":
return _centered(ret,abs(s2-s1)+1)
示例14: test_basic
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_basic(self):
a = [3,4,5,6,5,4]
b = [1,2,3]
c = convolve(a,b)
assert_array_equal(c,array([3,10,22,28,32,32,23,12]))
示例15: test_complex
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import convolve [as 別名]
def test_complex(self):
x = array([1+1j, 2+1j, 3+1j])
y = array([1+1j, 2+1j])
z = convolve(x, y)
assert_array_equal(z, array([2j, 2+6j, 5+8j, 5+5j]))