本文整理匯總了Python中scipy.signal.cont2discrete方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.cont2discrete方法的具體用法?Python signal.cont2discrete怎麽用?Python signal.cont2discrete使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.cont2discrete方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_gbt
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_gbt(self):
ac = np.eye(2)
bc = 0.5 * np.ones((2, 1))
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
alpha = 1.0 / 3.0
ad_truth = 1.6 * np.eye(2)
bd_truth = 0.3 * np.ones((2, 1))
cd_truth = np.array([[0.9, 1.2],
[1.2, 1.2],
[1.2, 0.3]])
dd_truth = np.array([[0.175],
[0.2],
[-0.205]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='gbt', alpha=alpha)
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
示例2: test_zoh
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_zoh(self):
ac = np.eye(2)
bc = 0.5 * np.ones((2, 1))
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
ad_truth = 1.648721270700128 * np.eye(2)
bd_truth = 0.324360635350064 * np.ones((2, 1))
# c and d in discrete should be equal to their continuous counterparts
dt_requested = 0.5
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cc, cd)
assert_array_almost_equal(dc, dd)
assert_almost_equal(dt_requested, dt)
示例3: test_euler
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_euler(self):
ac = np.eye(2)
bc = 0.5 * np.ones((2, 1))
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 1.5 * np.eye(2)
bd_truth = 0.25 * np.ones((2, 1))
cd_truth = np.array([[0.75, 1.0],
[1.0, 1.0],
[1.0, 0.25]])
dd_truth = dc
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='euler')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
assert_almost_equal(dt_requested, dt)
示例4: test_backward_diff
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_backward_diff(self):
ac = np.eye(2)
bc = 0.5 * np.ones((2, 1))
cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
dc = np.array([[0.0], [0.0], [-0.33]])
dt_requested = 0.5
ad_truth = 2.0 * np.eye(2)
bd_truth = 0.5 * np.ones((2, 1))
cd_truth = np.array([[1.5, 2.0],
[2.0, 2.0],
[2.0, 0.5]])
dd_truth = np.array([[0.875],
[1.0],
[0.295]])
ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
method='backward_diff')
assert_array_almost_equal(ad_truth, ad)
assert_array_almost_equal(bd_truth, bd)
assert_array_almost_equal(cd_truth, cd)
assert_array_almost_equal(dd_truth, dd)
示例5: test_zerospolesgain
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_zerospolesgain(self):
zeros_c = np.array([0.5, -0.5])
poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k_c = 1.0
zeros_d = [1.23371727305860, 0.735356894461267]
polls_d = [0.938148335039729 + 0.346233593780536j,
0.938148335039729 - 0.346233593780536j]
k_d = 1.0
dt_requested = 0.5
zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested,
method='zoh')
assert_array_almost_equal(zeros_d, zeros)
assert_array_almost_equal(polls_d, poles)
assert_almost_equal(k_d, k)
assert_almost_equal(dt_requested, dt)
示例6: test_multioutput
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_multioutput(self):
ts = 0.01 # time step
tf = ([[1, -3], [1, 5]], [1, 1])
num, den, dt = c2d(tf, ts)
tf1 = (tf[0][0], tf[1])
num1, den1, dt1 = c2d(tf1, ts)
tf2 = (tf[0][1], tf[1])
num2, den2, dt2 = c2d(tf2, ts)
# Sanity checks
assert_equal(dt, dt1)
assert_equal(dt, dt2)
# Check that we get the same results
assert_allclose(num, np.vstack((num1, num2)), rtol=1e-13)
# Single input, so the denominator should
# not be multidimensional like the numerator
assert_allclose(den, den1, rtol=1e-13)
assert_allclose(den, den2, rtol=1e-13)
示例7: linearize
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def linearize(self):
"""Return the discretized, scaled, linearized system.
Returns
-------
Ad : ndarray
The discrete-time state matrix.
"""
A = np.array([[0, -1], [1, -1]], dtype=config.np_dtype)
if self.normalization is not None:
Tx = np.diag(self.normalization)
Tx_inv = np.diag(self.inv_norm)
A = np.linalg.multi_dot((Tx_inv, A, Tx))
B = np.zeros([2, 1])
Ad, _, _, _, _ = signal.cont2discrete((A, B, 0, 0), self.dt, method='zoh')
return Ad
示例8: cont2disc
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def cont2disc(self, dt=None):
"""Convert continuous-time SS model into """
assert self.discr_method is not 'newmark', \
'For Newmark-beta discretisation, use assemble method directly.'
if dt is not None:
self.dt = dt
else:
assert self.dt is not None, \
'Provide time-step for convertion to discrete-time'
SScont = self.SScont
tpl = scsig.cont2discrete(
(SScont.A, SScont.B, SScont.C, SScont.D),
dt=self.dt, method=self.discr_method)
self.SSdisc = libss.ss(*tpl[:-1], dt=tpl[-1])
self.dlti = True
示例9: test_gbt_with_sio_tf_and_zpk
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_gbt_with_sio_tf_and_zpk(self):
"""Test method='gbt' with alpha=0.25 for tf and zpk cases."""
# State space coefficients for the continuous SIO system.
A = -1.0
B = 1.0
C = 1.0
D = 0.5
# The continuous transfer function coefficients.
cnum, cden = ss2tf(A, B, C, D)
# Continuous zpk representation
cz, cp, ck = ss2zpk(A, B, C, D)
h = 1.0
alpha = 0.25
# Explicit formulas, in the scalar case.
Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A)
Bd = h * B / (1 - alpha * h * A)
Cd = C / (1 - alpha * h * A)
Dd = D + alpha * C * Bd
# Convert the explicit solution to tf
dnum, dden = ss2tf(Ad, Bd, Cd, Dd)
# Compute the discrete tf using cont2discrete.
c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha)
assert_allclose(dnum, c2dnum)
assert_allclose(dden, c2dden)
# Convert explicit solution to zpk.
dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd)
# Compute the discrete zpk using cont2discrete.
c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha)
assert_allclose(dz, c2dz)
assert_allclose(dp, c2dp)
assert_allclose(dk, c2dk)
示例10: test_discrete_approx
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_discrete_approx(self):
"""
Test that the solution to the discrete approximation of a continuous
system actually approximates the solution to the continuous sytem.
This is an indirect test of the correctness of the implementation
of cont2discrete.
"""
def u(t):
return np.sin(2.5 * t)
a = np.array([[-0.01]])
b = np.array([[1.0]])
c = np.array([[1.0]])
d = np.array([[0.2]])
x0 = 1.0
t = np.linspace(0, 10.0, 101)
dt = t[1] - t[0]
u1 = u(t)
# Use lsim2 to compute the solution to the continuous system.
t, yout, xout = lsim2((a, b, c, d), T=t, U=u1, X0=x0,
rtol=1e-9, atol=1e-11)
# Convert the continuous system to a discrete approximation.
dsys = c2d((a, b, c, d), dt, method='bilinear')
# Use dlsim with the pairwise averaged input to compute the output
# of the discrete system.
u2 = 0.5 * (u1[:-1] + u1[1:])
t2 = t[:-1]
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)
# ymid is the average of consecutive terms of the "exact" output
# computed by lsim2. This is what the discrete approximation
# actually approximates.
ymid = 0.5 * (yout[:-1] + yout[1:])
assert_allclose(yd2.ravel(), ymid, rtol=1e-4)
示例11: test_discrete_approx
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_discrete_approx(self):
"""
Test that the solution to the discrete approximation of a continuous
system actually approximates the solution to the continuous system.
This is an indirect test of the correctness of the implementation
of cont2discrete.
"""
def u(t):
return np.sin(2.5 * t)
a = np.array([[-0.01]])
b = np.array([[1.0]])
c = np.array([[1.0]])
d = np.array([[0.2]])
x0 = 1.0
t = np.linspace(0, 10.0, 101)
dt = t[1] - t[0]
u1 = u(t)
# Use lsim2 to compute the solution to the continuous system.
t, yout, xout = lsim2((a, b, c, d), T=t, U=u1, X0=x0,
rtol=1e-9, atol=1e-11)
# Convert the continuous system to a discrete approximation.
dsys = c2d((a, b, c, d), dt, method='bilinear')
# Use dlsim with the pairwise averaged input to compute the output
# of the discrete system.
u2 = 0.5 * (u1[:-1] + u1[1:])
t2 = t[:-1]
td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)
# ymid is the average of consecutive terms of the "exact" output
# computed by lsim2. This is what the discrete approximation
# actually approximates.
ymid = 0.5 * (yout[:-1] + yout[1:])
assert_allclose(yd2.ravel(), ymid, rtol=1e-4)
示例12: test_simo_tf
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def test_simo_tf(self):
# See gh-5753
tf = ([[1, 0], [1, 1]], [1, 1])
num, den, dt = c2d(tf, 0.01)
assert_equal(dt, 0.01) # sanity check
assert_allclose(den, [1, -0.990404983], rtol=1e-3)
assert_allclose(num, [[1, -1], [1, -0.99004983]], rtol=1e-3)
示例13: linearize_discretize
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def linearize_discretize(self, x_center=None, u_center=None, normalize=True):
""" Discretize and linearize the system around an equilibrium point
Parameters
----------
x_center: 2x0 array[float], optional
The linearization center of the state.
Default: the origin
u_center: 1x0 array[float], optional
The linearization center of the action
Default: zero
"""
if x_center is None:
x_center = self.p_origin
else:
raise NotImplementedError(
"For now we only allow linearization at the origin!")
if u_center is None:
u_center = np.zeros((self.n_s,))
else:
raise NotImplementedError(
"For now we only allow linearization at the origin!")
jac_ct = self._jac_dynamics()
A_ct = jac_ct[:, :self.n_s]
B_ct = jac_ct[:, self.n_s:]
if normalize:
m_x = np.diag(self.norm[0])
m_u = np.diag(self.norm[1])
m_x_inv = np.diag(self.inv_norm[0])
m_u_inv = np.diag(self.inv_norm[1])
A_ct = np.linalg.multi_dot((m_x_inv, A_ct, m_x))
B_ct = np.linalg.multi_dot((m_x_inv, B_ct, m_u))
ct_input = (A_ct, B_ct, np.eye(self.n_s), np.zeros((self.n_s, self.n_u)))
A, B, _, _, _ = cont2discrete(ct_input, self.dt)
return A, B
示例14: control_systems
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def control_systems(request):
ct_sys, ref = request.param
Ac, Bc, Cc = ct_sys.data
Dc = np.zeros((Cc.shape[0], 1))
Q = np.eye(Ac.shape[0])
R = np.eye(Bc.shape[1] if len(Bc.shape) > 1 else 1)
Sc = linalg.solve_continuous_are(Ac, Bc.reshape(-1, 1), Q, R,)
Kc = linalg.solve(R, Bc.T @ Sc).reshape(1, -1)
ct_ctr = LTISystem(Kc)
evals = np.sort(np.abs(
linalg.eig(Ac, left=False, right=False, check_finite=False)
))
dT = 1/(2*evals[-1])
Tsim = (8/np.min(evals[~np.isclose(evals, 0)])
if np.sum(np.isclose(evals[np.nonzero(evals)], 0)) > 0
else 8
)
dt_data = signal.cont2discrete((Ac, Bc.reshape(-1, 1), Cc, Dc), dT)
Ad, Bd, Cd, Dd = dt_data[:-1]
Sd = linalg.solve_discrete_are(Ad, Bd.reshape(-1, 1), Q, R,)
Kd = linalg.solve(Bd.T @ Sd @ Bd + R, Bd.T @ Sd @ Ad)
dt_sys = LTISystem(Ad, Bd, dt=dT)
dt_sys.initial_condition = ct_sys.initial_condition
dt_ctr = LTISystem(Kd, dt=dT)
yield ct_sys, ct_ctr, dt_sys, dt_ctr, ref, Tsim
示例15: sample
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import cont2discrete [as 別名]
def sample(self, Ts, method='zoh', alpha=None):
"""Convert a continuous time system to discrete time
Creates a discrete-time system from a continuous-time system by
sampling. Multiple methods of conversion are supported.
Parameters
----------
Ts : float
Sampling period
method : {"gbt", "bilinear", "euler", "backward_diff", "zoh"}
Which method to use:
* gbt: generalized bilinear transformation
* bilinear: Tustin's approximation ("gbt" with alpha=0.5)
* euler: Euler (or forward differencing) method ("gbt" with
alpha=0)
* backward_diff: Backwards differencing ("gbt" with alpha=1.0)
* zoh: zero-order hold (default)
alpha : float within [0, 1]
The generalized bilinear transformation weighting parameter, which
should only be specified with method="gbt", and is ignored
otherwise
Returns
-------
sysd : StateSpace
Discrete time system, with sampling rate Ts
Notes
-----
Uses the command 'cont2discrete' from scipy.signal
Examples
--------
>>> sys = StateSpace(0, 1, 1, 0)
>>> sysd = sys.sample(0.5, method='bilinear')
"""
if not self.isctime():
raise ValueError("System must be continuous time system")
sys = (self.A, self.B, self.C, self.D)
Ad, Bd, C, D, dt = cont2discrete(sys, Ts, method, alpha)
return StateSpace(Ad, Bd, C, D, dt)