當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.butter方法代碼示例

本文整理匯總了Python中scipy.signal.butter方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.butter方法的具體用法?Python signal.butter怎麽用?Python signal.butter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.butter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: butter_lowpass

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def butter_lowpass(cutoff, fs, order=5):
    """
    Design lowpass filter.

    Args:
        - cutoff (float) : the cutoff frequency of the filter.
        - fs     (float) : the sampling rate.
        - order    (int) : order of the filter, by default defined to 5.
    """
    # calculate the Nyquist frequency
    nyq = 0.5 * fs

    # design filter
    low = cutoff / nyq
    b, a = butter(order, low, btype='low', analog=False)

    # returns the filter coefficients: numerator and denominator
    return b, a 
開發者ID:SuperKogito,項目名稱:pydiogment,代碼行數:20,代碼來源:filters.py

示例2: butter_highpass

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def butter_highpass(cutoff, fs, order=5):
    """
    Design a highpass filter.

    Args:
        - cutoff (float) : the cutoff frequency of the filter.
        - fs     (float) : the sampling rate.
        - order    (int) : order of the filter, by default defined to 5.
    """
    # calculate the Nyquist frequency
    nyq = 0.5 * fs

    # design filter
    high = cutoff / nyq
    b, a = butter(order, high, btype='high', analog=False)

    # returns the filter coefficients: numerator and denominator
    return b, a 
開發者ID:SuperKogito,項目名稱:pydiogment,代碼行數:20,代碼來源:filters.py

示例3: butter_bandpass

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def butter_bandpass(low_cut, high_cut, fs, order=5):
    """
    Design band pass filter.

    Args:
        - low_cut  (float) : the low cutoff frequency of the filter.
        - high_cut (float) : the high cutoff frequency of the filter.
        - fs       (float) : the sampling rate.
        - order      (int) : order of the filter, by default defined to 5.
    """
    # calculate the Nyquist frequency
    nyq = 0.5 * fs

    # design filter
    low = low_cut / nyq
    high = high_cut / nyq
    b, a = butter(order, [low, high], btype='band')

    # returns the filter coefficients: numerator and denominator
    return b, a 
開發者ID:SuperKogito,項目名稱:pydiogment,代碼行數:22,代碼來源:filters.py

示例4: compressor

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def compressor(x, thresh=-24, ratio=2, attackrel=0.045, sr=44100.0, dtype=np.float32):
    """
    simple compressor effect, code thanks to Eric Tarr @hackaudio
    Inputs:
       x:        the input waveform
       thresh:   threshold in dB
       ratio:    compression ratio
       attackrel:   attack & release time in seconds
       sr:       sample rate
    """
    attack = attackrel * sr  # convert to samples
    fc = 1.0/float(attack)     # this is like 1/attack time
    b, a = scipy_signal.butter(1, fc, analog=False, output='ba')
    zi = scipy_signal.lfilter_zi(b, a)

    dB = 20. * np.log10(np.abs(x) + 1e-6)
    in_env, _ = scipy_signal.lfilter(b, a, dB, zi=zi*dB[0])  # input envelope calculation
    out_env = np.copy(in_env)              # output envelope
    i = np.where(in_env >  thresh)          # compress where input env exceeds thresh
    out_env[i] = thresh + (in_env[i]-thresh)/ratio
    gain = np.power(10.0,(out_env-in_env)/20)
    y = x * gain
    return y 
開發者ID:drscotthawley,項目名稱:signaltrain,代碼行數:25,代碼來源:audio.py

示例5: butter_highpass

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def butter_highpass(highcut, fs, order):
    nyq = 0.5 * fs
    high = highcut / nyq
    b, a = butter(order, high, btype="highpass")
    return b, a


# Sources for Batch Iterators
#
# These classes load training and test data and perform some basic preprocessing on it.
# They are then passed to factory functions that create the net. There they are used
# as data sources for the batch iterators that feed data to the net.
# All classes band pass or low pass filter their data based on min / max freq using
# a causal filter (lfilter) when the data is first loaded.
# * TrainSource loads a several series of EEG data and events, splices them together into
#   one long stream, then normalizes the EEG data to zero mean and unit standard deviation.
# * TestSource is like TrainSource except that it uses the mean and standard deviation
#   computed for the associated training source to normalize the EEG data.
# * SubmitSource is like TestSource except that it does not load and event data. 
開發者ID:bitsofbits,項目名稱:kaggle_grasp_and_lift_eeg_detection,代碼行數:21,代碼來源:grasp.py

示例6: test_zi_pseudobroadcast

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def test_zi_pseudobroadcast(self):
        x = self.generate((4, 5, 20))
        b,a = signal.butter(8, 0.2, output='ba')
        b = self.convert_dtype(b)
        a = self.convert_dtype(a)
        zi_size = b.shape[0] - 1

        # lfilter requires x.ndim == zi.ndim exactly.  However, zi can have
        # length 1 dimensions.
        zi_full = self.convert_dtype(np.ones((4, 5, zi_size)))
        zi_sing = self.convert_dtype(np.ones((1, 1, zi_size)))

        y_full, zf_full = lfilter(b, a, x, zi=zi_full)
        y_sing, zf_sing = lfilter(b, a, x, zi=zi_sing)

        assert_array_almost_equal(y_sing, y_full)
        assert_array_almost_equal(zf_full, zf_sing)

        # lfilter does not prepend ones
        assert_raises(ValueError, lfilter, b, a, x, -1, np.ones(zi_size)) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_signaltools.py

示例7: __init__

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def __init__(self, recording, freq_min=300, freq_max=6000, freq_wid=1000, filter_type='fft', order=3,
                 chunk_size=30000, cache_chunks=False):
        assert HAVE_BFR, "To use the BandpassFilterRecording, install scipy: \n\n pip install scipy\n\n"
        self._freq_min = freq_min
        self._freq_max = freq_max
        self._freq_wid = freq_wid
        self._type = filter_type
        self._order = order
        self._chunk_size = chunk_size

        if self._type == 'butter':
            fn = recording.get_sampling_frequency() / 2.
            band = np.array([self._freq_min, self._freq_max]) / fn

            self._b, self._a = ss.butter(self._order, band, btype='bandpass')

            if not np.all(np.abs(np.roots(self._a)) < 1):
                raise ValueError('Filter is not stable')
        FilterRecording.__init__(self, recording=recording, chunk_size=chunk_size, cache_chunks=cache_chunks)
        self.copy_channel_properties(recording)

        self.is_filtered = True
        self._kwargs = {'recording': recording.make_serialized_dict(), 'freq_min': freq_min, 'freq_max': freq_max,
                        'freq_wid': freq_wid, 'filter_type': filter_type, 'order': order,
                        'chunk_size': chunk_size, 'cache_chunks': cache_chunks} 
開發者ID:SpikeInterface,項目名稱:spiketoolkit,代碼行數:27,代碼來源:bandpass_filter.py

示例8: _do_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def _do_filter(self, chunk):
        sampling_frequency = self._recording.get_sampling_frequency()
        M = chunk.shape[0]
        chunk2 = chunk
        # Do the actual filtering with a DFT with real input
        if self._type == 'fft':
            chunk_fft = np.fft.rfft(chunk2)
            kernel = _create_filter_kernel(
                chunk2.shape[1],
                sampling_frequency,
                self._freq_min, self._freq_max, self._freq_wid
            )
            kernel = kernel[0:chunk_fft.shape[1]]  # because this is the DFT of real data
            chunk_fft = chunk_fft * np.tile(kernel, (M, 1))
            chunk_filtered = np.fft.irfft(chunk_fft)
        elif self._type == 'butter':
            chunk_filtered = ss.filtfilt(self._b, self._a, chunk2, axis=1)

        return chunk_filtered 
開發者ID:SpikeInterface,項目名稱:spiketoolkit,代碼行數:21,代碼來源:bandpass_filter.py

示例9: bandpass_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def bandpass_filter(data, low, high, fs, order=5):
    """
    Does a bandpass filter over the given data.

    :param data: The data (numpy array) to be filtered.
    :param low: The low cutoff in Hz.
    :param high: The high cutoff in Hz.
    :param fs: The sample rate (in Hz) of the data.
    :param order: The order of the filter. The higher the order, the tighter the roll-off.
    :returns: Filtered data (numpy array).
    """
    if not scipy_imported:
        raise NotImplementedError("This function is unusable without Scipy")

    nyq = 0.5 * fs
    low = low / nyq
    high = high / nyq
    b, a = signal.butter(order, [low, high], btype='band')
    y = signal.lfilter(b, a, data)
    return y 
開發者ID:MaxStrange,項目名稱:AudioSegment,代碼行數:22,代碼來源:filters.py

示例10: lowpass_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def lowpass_filter(data, cutoff, fs, order=5):
    """
    Does a lowpass filter over the given data.

    :param data: The data (numpy array) to be filtered.
    :param cutoff: The high cutoff in Hz.
    :param fs: The sample rate in Hz of the data.
    :param order: The order of the filter. The higher the order, the tighter the roll-off.
    :returns: Filtered data (numpy array).
    """
    if not scipy_imported:
        raise NotImplementedError("This function is unusable without Scipy")

    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
    y = signal.lfilter(b, a, data)
    return y 
開發者ID:MaxStrange,項目名稱:AudioSegment,代碼行數:20,代碼來源:filters.py

示例11: digital_down_conversion

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def digital_down_conversion(self, I, Q, freqs=None):
        """
        performs a digital down conversion to get rid of the carrier frequency.
        Useful for timetrace readout, when only envelope is needed.
        :param I:
        :param Q:
        :param freqs:
        :return:
        """
        if freqs is None:
            freqs = np.array(self._tone_freq) - self._LO
        samplerate = self.get_adc_clock()
        sig_amp = np.zeros((len(freqs), len(I)))
        sig_pha = np.zeros((len(freqs), len(I)))
        t = np.linspace(0, float(len(I)) / samplerate, len(I))
        for i, f in enumerate(freqs):
            cut_off_freq = self.cut_off_freq_ratio * np.abs(f) / (samplerate / 2)
            b, a = signal.butter(self.lowpass_order, cut_off_freq, 'low')  # design the filter
            signal_down = (I+1j*Q)*np.exp(1j*2*np.pi*f*t)
            signal_down_lp = scipy.signal.lfilter(b, a, signal_down)
            sig_amp[i, :] = np.abs(signal_down_lp)
            sig_pha[i, :] = np.angle(signal_down_lp)
        return sig_amp.T, sig_pha.T  # transform because readout expects the data this way

    # +++++ DAC (AWG) settings ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
開發者ID:qkitgroup,項目名稱:qkit,代碼行數:27,代碼來源:virtual_MultiplexingReadout.py

示例12: add_disturbance

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def add_disturbance(self, input):
        if self.options['input_disturbance'] is not None:
            fc = self.options['input_disturbance']['fc']
            stdev = self.options['input_disturbance']['stdev']
            if 'mean' in self.options['input_disturbance']:
                mean = self.options['input_disturbance']['mean']
            else:
                mean = np.zeros(stdev.shape)
            n_sign = input.shape[0]
            n_samp = input.shape[1]
            disturbance = np.zeros((n_sign, n_samp))
            filt = butter(3, fc, 'low')
            for k in range(n_sign):
                disturbance[k, :] = filtfilt(filt[0], filt[1],
                                             normal(mean[k], stdev[k], n_samp))
            return input + disturbance
        else:
            return input 
開發者ID:meco-group,項目名稱:omg-tools,代碼行數:20,代碼來源:vehicle.py

示例13: _butter_bandpass_filter

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def _butter_bandpass_filter(data, low_cut, high_cut, fs, axis = 0, order=5):
    '''Apply a bandpass butterworth filter with zero-phase filtering

    Args:
        data: (np.array)
        low_cut: (float) lower bound cutoff for high pass filter
        high_cut: (float) upper bound cutoff for low pass filter
        fs: (float) sampling frequency in Hz
        axis: (int) axis to perform filtering.
        order: (int) filter order for butterworth bandpass
    
    Returns:
        bandpass filtered data.
    '''
    nyq = 0.5 * fs
    b, a = butter(order, [low_cut/nyq, high_cut/nyq], btype='band')
    return filtfilt(b, a, data, axis=axis) 
開發者ID:cosanlab,項目名稱:nltools,代碼行數:19,代碼來源:stats.py

示例14: demodulate

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def demodulate(x, Fs, freq):
    """return decimated and demodulated audio signal envelope at a known CW frequency """
    t = np.arange(len(x))/ float(Fs)
    mixed =  x*((1 + np.sin(2*np.pi*freq*t))/2 )

    #calculate envelope and low pass filter this demodulated signal
    #filter bandwidth impacts decoding accuracy significantly 
    #for high SNR signals 40 Hz is better, for low SNR 20Hz is better
    # 25Hz is a compromise - could this be made an adaptive value?
    low_cutoff = 25. # 25 Hz cut-off for lowpass
    wn = low_cutoff/ (Fs/2.)    
    b, a = butter(3, wn)  # 3rd order butterworth filter
    z = filtfilt(b, a, abs(mixed))
    
    decimate = int(Fs/64) # 8000 Hz / 64 = 125 Hz => 8 msec / sample 
    Ts = 1000.*decimate/float(Fs)
    o = z[0::decimate]/max(z)
    return o 
開發者ID:ag1le,項目名稱:LSTM_morse,代碼行數:20,代碼來源:MorseDecoder.py

示例15: upscale_log

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import butter [as 別名]
def upscale_log(log, freq=20):
    """
    downscale a well log with a lowpass butterworth filter
    """
    depth = np.array(log.depth)
    data = np.array(log.data)
    mask = np.isfinite(data)
    func = interp1d(depth[mask], data[mask])
    interp_data = func(depth[log.start_idx: log.stop_idx])
    nyq = 10000 / 2
    dw = freq / nyq
    b, a = butter(4, dw, btype='low', analog=False)
    filtered = filtfilt(b, a, interp_data, method='gust')
    downscale_data = np.array(data)
    downscale_data[log.start_idx: log.stop_idx] = filtered
    log_downscale = Log()
    log_downscale.name = log.name + "_downscale_" + str(freq)
    log_downscale.units = log.units
    log_downscale.descr = log.descr
    log_downscale.depth = log.depth
    log_downscale.data = downscale_data
    return log_downscale 
開發者ID:whimian,項目名稱:pyGeoPressure,代碼行數:24,代碼來源:log_tools.py


注:本文中的scipy.signal.butter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。