本文整理匯總了Python中scipy.signal.argrelmin方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.argrelmin方法的具體用法?Python signal.argrelmin怎麽用?Python signal.argrelmin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.signal
的用法示例。
在下文中一共展示了signal.argrelmin方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: voltage_threshold
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmin [as 別名]
def voltage_threshold(recording, threshold, order=5):
T, C = recording.shape
spike_index = np.zeros((0, 2), 'int32')
energy = np.zeros(0, 'float32')
for c in range(C):
single_chan_rec = recording[:, c]
index = argrelmin(single_chan_rec, order=order)[0]
index = index[single_chan_rec[index] < -threshold]
spike_index_temp = np.vstack((index,
np.ones(len(index), 'int32')*c)).T
spike_index = np.concatenate((spike_index, spike_index_temp), axis=0)
energy_ = np.abs(single_chan_rec[index])
energy = np.hstack((energy, energy_))
return spike_index, energy
示例2: estimate_actions
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmin [as 別名]
def estimate_actions(self, episode_data):
"""
Estimates hold/buy/sell signals based on local peaks filtered by time horizon and signal amplitude.
Args:
episode_data: 1D np.array of unscaled [but possibly resampled] price values in OHL[CV] format
Returns:
1D vector of signals of same length as episode_data
"""
# Find local maxima and minima indices within time horizon:
max_ind = signal.argrelmax(episode_data, order=self.time_threshold)
min_ind = signal.argrelmin(episode_data, order=self.time_threshold)
indices = np.append(max_ind, min_ind)
# Append first and last points:
indices = np.append(indices, [0, episode_data.shape[0] - 1])
indices = np.sort(indices)
indices_and_values = []
for i in indices:
indices_and_values.append([episode_data[i], i])
# Filter by value:
indices_and_values = self.filter_by_margine(indices_and_values, self.value_threshold)
#print('filtered_indices_and_values:', indices_and_values)
# Estimate advised actions (no 'close' btw):
# Assume all 'hold':
advice = np.ones(episode_data.shape[0], dtype=np.uint32) * self.action_space[0]
for num, (v, i) in enumerate(indices_and_values[:-1]):
if v < indices_and_values[num + 1][0]:
advice[i] = self.action_space[1]
else:
advice[i] = self.action_space[2]
return advice
示例3: find_extrema
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmin [as 別名]
def find_extrema(signal):
signal = np.array(signal)
extrema_index = np.sort(np.unique(np.concatenate((argrelmax(signal)[0], argrelmin(signal)[0]))))
extrema = signal[extrema_index]
return zip(extrema_index.tolist(), extrema.tolist())
示例4: _getDotDistance
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmin [as 別名]
def _getDotDistance(self, dots, axis):
""" calculates dot distance from dist. between all neighbouring dots
"""
# create distance matrix distM of dots
z = np.array([complex(d[0],d[1]) for d in dots])
#z = dots[:,axis] # TODO: test, ob alles auch hiermit funktionieren würde
try:
distM = abs(z[..., np.newaxis] - z)
except MemoryError:
self._raise(TooManyDotsException,self.ydPerInch)
del z
distM[distM==0] = np.max(distM)+1
neighbours = np.argmin(distM, axis=0)
#distances = distM.flat
#distances = [abs(dots[i,axis]-dots[j,axis]) for i,j in enumerate(neighbours) if dots[i,axis]!=dots[j,axis]]
distances = np.abs(dots[:,axis]-dots[neighbours,axis])
distances = distances[distances>0]
f = np.bincount(np.array(distances,dtype=np.uint16))
#print(f[:15])
#return np.argmax(f)
self._print(3,"\n%s\n"%f[:30])
maxima = np.array(argrelmax(f.argsort().argsort())[0])
#maxima = [m for m in maxima if np.argmax(f)%m==0]
MIN_DOT_DISTANCE = 0.01 # inches
minDist = int(MIN_DOT_DISTANCE*self.imgDpi)
if len(f[minDist:]) == 0:
self._raise(YDExtractingException,"Dot distances below minimum")
maximum = np.argmax(f[minDist:])+minDist
distance = maximum/2 if maximum/2.0 in maxima and float(maximum)/self.imgDpi==0.04 else maximum # because of Ricoh's marking dot
"""
maxima_vals = f[maxima]
threshold = np.percentile(f,93) #TODO schreiben TODO: oder percentile(f,...)?
maxima = maxima[maxima_vals>threshold]
maxima = [x for x in maxima if x<2 or x>len(f)-1-2 or not(f[x-2]<f[x] and f[x+2]>f[x] or f[x-2]>f[x] and f[x+2]<f[x])] #exclude hills on the way to maximum #TODO: schreiben removed
# a=f[x-2]-f[x]; b=f[x+2]-f[x]; a<0 and b>0 or a>0 and b<0 gdw a*b<0
# pitch1 =
distance = maxima[1]
"""
return distance
"""
# calculate dmin from distribution of $distances
# distances for each dot to its closest one
distances = np.min(distM, axis=0)
del distM
#div=100.0 #FIXME: depends on scaling? (hier: float2int)
div = 1
distances = np.array((distances*div).round(),dtype=np.int32)
count = np.bincount(distances)
maxima = argrelmax(count.argsort().argsort())[0]
minima = argrelmin(count.argsort().argsort())[0]
#dMin = minima[0]
MIN_DOT_DISTANCE = 4/300.0 # inches # TODO: automatic detection of dublicate dots instead
minDist = int(MIN_DOT_DISTANCE*self.imgDpi*div)
import ipdb;ipdb.set_trace()
distance = (np.argmax(count[minDist:])+minDist)/div
return distance
return maxima[1]
"""
示例5: findPatternLen
# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmin [as 別名]
def findPatternLen(self, m):
distM = np.zeros(shape=(m.shape[0],m.shape[0]))
z = m.copy()
z[z==0] = -1
z[z==.5] = 0
for i in xrange(m.shape[0]):
a = z[i]*z
total = np.sum(a!=0,axis=1)
a[a==1] = 0
distM[i] = np.abs(np.sum(a,axis=1))/total
# remove cols without ones:
ones = np.sum(z==1,axis=1)
remove = ones<=0
distM[:,remove] = np.nan
distM[remove,:] = np.nan
div=50.0
f = np.bincount(np.array((distM[np.isnan(distM)==False]*div).round(),dtype=np.int32).flat)
minima = argrelmin(f.argsort().argsort())[0]
if len(minima) > 1:
threshold = minima[0]/div
elif len(f)>0:
threshold = f.argmax()/2/div
else: threshold = 0
self._print(3,"threshold=%f\n"%threshold)
X1, X2 = np.nonzero(distM<=threshold)
#func = lambda arr: np.argmax(np.bincount(arr))
func = np.median
#func = np.average
#func = lambda x: x
distances = [
func(self._distances(X1[X2==i]))
for i in xrange(m.shape[0])
if len(X1[X2==i])>1
#and 1 in m[i]
]
distFreq = np.bincount(np.array(distances,dtype=np.int32))
self._print(3,"Pattern length frequencies: \n%s\n"%repr(distFreq))
MIN_MATRIX_PATTERN_LENGTH = 5 #4
MAX_MATRIX_PATTERN_LENGTH = None # 30
distFreqWindow = distFreq[MIN_MATRIX_PATTERN_LENGTH:MAX_MATRIX_PATTERN_LENGTH]
if len(distFreqWindow)==0:
self._print(0,"WARNING: Cannot detect pattern length.\n")
return -1
period = np.argmax(distFreqWindow)+MIN_MATRIX_PATTERN_LENGTH
return period