當前位置: 首頁>>代碼示例>>Python>>正文


Python signal.argrelmax方法代碼示例

本文整理匯總了Python中scipy.signal.argrelmax方法的典型用法代碼示例。如果您正苦於以下問題:Python signal.argrelmax方法的具體用法?Python signal.argrelmax怎麽用?Python signal.argrelmax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.signal的用法示例。


在下文中一共展示了signal.argrelmax方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call_peaks

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def call_peaks(sigvals, min_signal = 0, sep = 120, boundary = None, order =1):
    """Greedy algorithm for peak calling-- first call all local maxima,
    then call greatest maxima as a peak, then next greatest that isn't within
    'sep' distance of that peak, and so on"""
    if sum(np.isnan(sigvals))>0:
        if sum(np.isnan(sigvals))==len(sigvals):
            return np.array([])
        else:
            replace = min(sigvals[~np.isnan(sigvals)])
            sigvals[np.isnan(sigvals)]=replace
    if boundary is None:
        boundary = sep/2
    random = np.random.RandomState(seed = 25)
    l = len(sigvals)
    peaks = signal.argrelmax(sigvals *(1+
                        random.uniform(0,10**-12,l)),order=order)[0]
    peaks = peaks[sigvals[peaks] >= min_signal ]
    peaks = peaks[ peaks >= boundary ]
    peaks = peaks[ peaks < (l - boundary)]
    sig = sigvals[peaks]
    return reduce_peaks(peaks, sig, sep) 
開發者ID:GreenleafLab,項目名稱:NucleoATAC,代碼行數:23,代碼來源:utils.py

示例2: validate_ppg_single_waveform

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def validate_ppg_single_waveform(single_waveform, sample_rate=PPG_SAMPLE_RATE):
    period = float(len(single_waveform)) / float(sample_rate)
    if period < MINIMUM_PULSE_CYCLE or period > MAXIMUM_PULSE_CYCLE:
        return False
    max_index = np.argmax(single_waveform)
    if float(max_index) / float(len(single_waveform)) >= 0.5:
        return False
    if len(argrelmax(np.array(single_waveform))[0]) < 2:
        return False
    min_index = np.argmin(single_waveform)
    if not (min_index == 0 or min_index == len(single_waveform) - 1):
        return False
    diff = np.diff(single_waveform[:max_index+1], n=1)
    if min(diff) < 0:
        return False
    if abs(single_waveform[0] - single_waveform[-1]) / (single_waveform[max_index] - single_waveform[min_index]) > 0.1:
        return False
    return True 
開發者ID:qiriro,項目名稱:PPG,代碼行數:20,代碼來源:signal.py

示例3: estimateTargetTDOAIndexesFromAngularSpectrum

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def estimateTargetTDOAIndexesFromAngularSpectrum(angularSpectrum, microphoneSeparationInMetres, numTDOAs, numSources):
    peakIndexes = argrelmax(angularSpectrum)[0]
    tdoasInSeconds = getTDOAsInSeconds(microphoneSeparationInMetres, numTDOAs)
    
    if numSources:
        logging.info('numSources provided, taking first %d peaks' % numSources )
        sourcePeakIndexes = peakIndexes[ argsort(angularSpectrum[peakIndexes])[-numSources:] ]
        
        if len(sourcePeakIndexes) != numSources:
            logging.info('didn''t find enough peaks in ITDFunctions.estimateTargetTDOAIndexesFromAngularSpectrum... aborting' )
            os._exit(1)
    else:
        kMeans = KMeans(n_clusters=2, n_init=10)
        kMeans.fit(angularSpectrum[peakIndexes][:, newaxis])
        sourcesClusterIndex = argmax(kMeans.cluster_centers_)
        sourcePeakIndexes = peakIndexes[where(kMeans.labels_ == sourcesClusterIndex)].astype('int32')
        logging.info('numSources not provided, found %d sources' % len(sourcePeakIndexes) )
    
    # return sources ordered left to right
    sourcePeakIndexes = sorted(sourcePeakIndexes)
    
    logging.info( 'Found target TDOAs: %s' % str(sourcePeakIndexes) )
    return sourcePeakIndexes 
開發者ID:seanwood,項目名稱:gcc-nmf,代碼行數:25,代碼來源:gccNMFFunctions.py

示例4: estimate_actions

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def estimate_actions(self, episode_data):
        """
        Estimates hold/buy/sell signals based on local peaks filtered by time horizon and signal amplitude.

        Args:
            episode_data:   1D np.array of unscaled [but possibly resampled] price values in OHL[CV] format

        Returns:
            1D vector of signals of same length as episode_data
        """
        # Find local maxima and minima indices within time horizon:
        max_ind = signal.argrelmax(episode_data, order=self.time_threshold)
        min_ind = signal.argrelmin(episode_data, order=self.time_threshold)
        indices = np.append(max_ind, min_ind)
        # Append first and last points:
        indices = np.append(indices, [0, episode_data.shape[0] - 1])
        indices = np.sort(indices)

        indices_and_values = []

        for i in indices:
            indices_and_values.append([episode_data[i], i])

        # Filter by value:
        indices_and_values = self.filter_by_margine(indices_and_values, self.value_threshold)

        #print('filtered_indices_and_values:', indices_and_values)

        # Estimate advised actions (no 'close' btw):
        # Assume all 'hold':
        advice = np.ones(episode_data.shape[0], dtype=np.uint32) * self.action_space[0]

        for num, (v, i) in enumerate(indices_and_values[:-1]):
            if v < indices_and_values[num + 1][0]:
                advice[i] = self.action_space[1]

            else:
                advice[i] = self.action_space[2]

        return advice 
開發者ID:Kismuz,項目名稱:btgym,代碼行數:42,代碼來源:oracle.py

示例5: get_landing_burn

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def get_landing_burn(data):
    max_q_landing_index = data['q'].index(max(data['q']))
    post_q_data = data_between(data, start=max_q_landing_index)
    minpoint = signal.argrelmax(np.array(post_q_data['acceleration']))[0][0]
    return minpoint + max_q_landing_index, np.argmax(np.array(data['velocity']) < 5) 
開發者ID:shahar603,項目名稱:SpaceXtract,代碼行數:7,代碼來源:get_metadata.py

示例6: find_extrema

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def find_extrema(signal):
    signal = np.array(signal)
    extrema_index = np.sort(np.unique(np.concatenate((argrelmax(signal)[0], argrelmin(signal)[0]))))
    extrema = signal[extrema_index]
    return zip(extrema_index.tolist(), extrema.tolist()) 
開發者ID:qiriro,項目名稱:PPG,代碼行數:7,代碼來源:signal.py

示例7: get_peaks

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def get_peaks(rx):
    peaks = signal.argrelmax(rx, order=10000)[0]

    peak_diffs = np.diff(peaks)

    if np.isfinite(peak_diffs):
        print("avg peak distance:", peak_diffs.mean())
        print("max peak distance:", peak_diffs.max())
        print("min peak distance:", peak_diffs.min())

        L = peak_diffs.min()
    else:
        L = None

    return peaks, L 
開發者ID:scivision,項目名稱:piradar,代碼行數:17,代碼來源:FMCWteam.py

示例8: find_angle_hog

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def find_angle_hog(image, centermass, px, py, angle_range=10):
    """Finds the angle of an image based on the method described by Sun, “Symmetry Detection Using Gradient Information.”
     Pattern Recognition Letters 16, no. 9 (September 1, 1995): 987–96, and improved by N. Pinon
     inputs :
        - image : 2D numpy array to find symmetry axis on
        - centermass: tuple of floats indicating the center of mass of the image
        - px, py, dimensions of the pixels in the x and y direction
        - angle_range : float or None, in deg, the angle will be search in the range [-angle_range, angle_range], if None angle angle might be returned
     outputs :
        - angle_found : float, angle found by the method
        - conf_score : confidence score of the method (Actually a WIP, did not provide sufficient results to be used)
    """

    # param that can actually be tweeked to influence method performance :
    sigma = 10  # influence how far away pixels will vote for the orientation, if high far away pixels vote will count more, if low only closest pixels will participate
    nb_bin = 360  # number of angle bins for the histogram, can be more or less than 360, if high, a higher precision might be achieved but there is the risk of
    kmedian_size = 5

    # Normalization of sigma relative to pixdim :
    sigmax = sigma / px
    sigmay = sigma / py
    if nb_bin % 2 != 0:  # necessary to have even number of bins
        nb_bin = nb_bin - 1
    if angle_range is None:
        angle_range = 90

    # Constructing mask based on center of mass that will influence the weighting of the orientation histogram
    nx, ny = image.shape
    xx, yy = np.mgrid[:nx, :ny]
    seg_weighted_mask = np.exp(
        -(((xx - centermass[0]) ** 2) / (2 * (sigmax ** 2)) + ((yy - centermass[1]) ** 2) / (2 * (sigmay ** 2))))

    # Acquiring the orientation histogram :
    grad_orient_histo = gradient_orientation_histogram(image, nb_bin=nb_bin, seg_weighted_mask=seg_weighted_mask)
    # Bins of the histogram :
    repr_hist = np.linspace(-(np.pi - 2 * np.pi / nb_bin), (np.pi - 2 * np.pi / nb_bin), nb_bin - 1)
    # Smoothing of the histogram, necessary to avoid digitization effects that will favor angles 0, 45, 90, -45, -90:
    grad_orient_histo_smooth = circular_filter_1d(grad_orient_histo, kmedian_size, kernel='median')  # fft than square than ifft to calculate convolution
    # Computing the circular autoconvolution of the histogram to obtain the axis of symmetry of the histogram :
    grad_orient_histo_conv = circular_conv(grad_orient_histo_smooth, grad_orient_histo_smooth)
    # Restraining angle search to the angle range :
    index_restrain = int(np.ceil(np.true_divide(angle_range, 180) * nb_bin))
    center = (nb_bin - 1) // 2
    grad_orient_histo_conv_restrained = grad_orient_histo_conv[center - index_restrain + 1:center + index_restrain + 1]
    # Finding the symmetry axis by searching for the maximum in the autoconvolution of the histogram :
    index_angle_found = np.argmax(grad_orient_histo_conv_restrained) + (nb_bin // 2 - index_restrain)
    angle_found = repr_hist[index_angle_found] / 2
    angle_found_score = np.amax(grad_orient_histo_conv_restrained)
    # Finding other maxima to compute confidence score
    arg_maxs = argrelmax(grad_orient_histo_conv_restrained, order=kmedian_size, mode='wrap')[0]
    # Confidence score is the ratio of the 2 first maxima :
    if len(arg_maxs) > 1:
        conf_score = angle_found_score / grad_orient_histo_conv_restrained[arg_maxs[1]]
    else:
        conf_score = angle_found_score / np.mean(grad_orient_histo_conv)  # if no other maxima  in the region ratio of the maximum to the mean

    return angle_found, conf_score 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:59,代碼來源:msct_register.py

示例9: _getDotDistance

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def _getDotDistance(self, dots, axis):
        """ calculates dot distance from dist. between all neighbouring dots
        """
        # create distance matrix distM of dots
        z = np.array([complex(d[0],d[1]) for d in dots])
        #z = dots[:,axis] # TODO: test, ob alles auch hiermit funktionieren würde
        try:
            distM = abs(z[..., np.newaxis] - z)
        except MemoryError:
            self._raise(TooManyDotsException,self.ydPerInch)
        del z
        distM[distM==0] = np.max(distM)+1
        neighbours = np.argmin(distM, axis=0)
        #distances = distM.flat
        #distances = [abs(dots[i,axis]-dots[j,axis]) for i,j in enumerate(neighbours) if dots[i,axis]!=dots[j,axis]]
        distances = np.abs(dots[:,axis]-dots[neighbours,axis])
        distances = distances[distances>0]
        
        f = np.bincount(np.array(distances,dtype=np.uint16))
        #print(f[:15])
        #return np.argmax(f)
        self._print(3,"\n%s\n"%f[:30])
        maxima = np.array(argrelmax(f.argsort().argsort())[0])
        #maxima = [m for m in maxima if np.argmax(f)%m==0]
        MIN_DOT_DISTANCE = 0.01 # inches
        minDist = int(MIN_DOT_DISTANCE*self.imgDpi)
        if len(f[minDist:]) == 0: 
            self._raise(YDExtractingException,"Dot distances below minimum")
        maximum = np.argmax(f[minDist:])+minDist
        distance = maximum/2 if maximum/2.0 in maxima and float(maximum)/self.imgDpi==0.04 else maximum # because of Ricoh's marking dot
        """
        maxima_vals = f[maxima]
        threshold = np.percentile(f,93) #TODO schreiben TODO: oder percentile(f,...)?
        maxima = maxima[maxima_vals>threshold]
        maxima = [x for x in maxima if x<2 or x>len(f)-1-2 or not(f[x-2]<f[x] and f[x+2]>f[x] or f[x-2]>f[x] and f[x+2]<f[x])] #exclude hills on the way to maximum  #TODO: schreiben removed
        # a=f[x-2]-f[x]; b=f[x+2]-f[x]; a<0 and b>0 or a>0 and b<0 gdw a*b<0
        # pitch1 = 
        distance = maxima[1]
        """
        return distance

        """
        # calculate dmin from distribution of $distances 
        # distances for each dot to its closest one
        distances = np.min(distM, axis=0)
        del distM
        #div=100.0 #FIXME: depends on scaling? (hier: float2int)
        div = 1
        distances = np.array((distances*div).round(),dtype=np.int32)
        count = np.bincount(distances)
        maxima = argrelmax(count.argsort().argsort())[0]
        minima = argrelmin(count.argsort().argsort())[0]
        #dMin = minima[0]
        MIN_DOT_DISTANCE = 4/300.0 # inches # TODO: automatic detection of dublicate dots instead
        minDist = int(MIN_DOT_DISTANCE*self.imgDpi*div)
        import ipdb;ipdb.set_trace()
        distance = (np.argmax(count[minDist:])+minDist)/div
        return distance
        return maxima[1]
        """ 
開發者ID:dfd-tud,項目名稱:deda,代碼行數:62,代碼來源:extract_yd.py

示例10: _seg

# 需要導入模塊: from scipy import signal [as 別名]
# 或者: from scipy.signal import argrelmax [as 別名]
def _seg(self, n_bkps=None, pen=None, epsilon=None):
        """Sequential peak search.

        The stopping rule depends on the parameter passed to the function.

        Args:
            n_bkps (int): number of breakpoints to find before stopping.
            penalty (float): penalty value (>0)
            epsilon (float): reconstruction budget (>0)

        Returns:
            list: breakpoint index list
        """

        # initialization
        bkps = [self.n_samples]
        stop = False
        error = self.cost.sum_of_costs(bkps)
        # peak search
        # forcing order to be above one in case jump is too large (issue #16)
        order = max(max(self.width, 2*self.min_size) // (2 * self.jump), 1)
        peak_inds_shifted, = argrelmax(self.score,
                                       order=order,
                                       mode="wrap")

        if peak_inds_shifted.size == 0:  # no peaks if the score is constant
            return bkps
        gains = np.take(self.score, peak_inds_shifted)
        peak_inds_arr = np.take(self.inds, peak_inds_shifted)
        # sort according to score value
        _, peak_inds = unzip(sorted(zip(gains, peak_inds_arr)))
        peak_inds = list(peak_inds)

        while not stop:
            stop = True
            # _, bkp = max((v, k) for k, v in enumerate(self.score, start=1)
            # if not any(abs(k - b) < self.width // 2 for b in bkps[:-1]))

            try:
                # index with maximum score
                bkp = peak_inds.pop()
            except IndexError:  # peak_inds is empty
                break

            if n_bkps is not None:
                if len(bkps) - 1 < n_bkps:
                    stop = False
            elif pen is not None:
                gain = error - self.cost.sum_of_costs(sorted([bkp] + bkps))
                if gain > pen:
                    stop = False
            elif epsilon is not None:
                if error > epsilon:
                    stop = False

            if not stop:
                bkps.append(bkp)
                bkps.sort()
                error = self.cost.sum_of_costs(bkps)

        return bkps 
開發者ID:deepcharles,項目名稱:ruptures,代碼行數:63,代碼來源:window.py


注:本文中的scipy.signal.argrelmax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。