本文整理匯總了Python中scipy.optimize.newton_krylov方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.newton_krylov方法的具體用法?Python optimize.newton_krylov怎麽用?Python optimize.newton_krylov使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.newton_krylov方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: solve
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import newton_krylov [as 別名]
def solve(self):
"""Solve the selfconsistent problem"""
return
self.iterate() # first iteration
def r2z(v): # convert real to complex
n = v.shape[0]//2
return v[0:n] + 1j*v[n:2*n]
def z2r(v): # convert complex to real
return np.concatenate([v.real,v.imag])
def fopt(cij): # function to return the error
self.cij = r2z(cij) # store this vector
self.cij2v() # update the v vectors
self.iterate() # do an iteration
print(self.cij)
self.v2cij() # convert the v to cij
return z2r(self.cij)-cij
cij = optimize.broyden1(fopt,z2r(self.cij),f_tol=1e-8,max_rank=10)
# cij = optimize.fsolve(fopt,z2r(self.cij),xtol=1e-8)
# cij = optimize.anderson(fopt,z2r(self.cij),f_tol=1e-6,w0=0.1)
# cij = optimize.newton_krylov(fopt,z2r(self.cij),f_tol=1e-6,outer_k=8)
self.cij = cij
self.cij2v() # update
示例2: newton_krylov_solve
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import newton_krylov [as 別名]
def newton_krylov_solve(simulation, Estart=None, conv_threshold=1e-10, max_num_iter=50,
averaging=True, solver=DEFAULT_SOLVER, jac_solver='c2r',
matrix_format=DEFAULT_MATRIX_FORMAT):
# THIS DOESNT WORK YET!
# Stores convergence parameters
conv_array = np.zeros((max_num_iter, 1))
# num. columns and rows of A
Nbig = simulation.Nx*simulation.Ny
# Defne the starting field for the simulation
if Estart is None:
if simulation.fields['Ez'] is None:
(_, _, E0) = simulation.solve_fields()
else:
E0 = deepcopy(simulation.fields['Ez'])
else:
E0 = Estart
E0 = np.reshape(E0, (-1,))
# funtion for roots
def _f(E):
E = np.reshape(E, simulation.eps_r.shape)
fx = nl_eq_and_jac(simulation, Ez=E, compute_jac=False, matrix_format=matrix_format)
return np.reshape(fx, (-1,))
print(_f(E0))
E_nl = newton_krylov(_f, E0, verbose=True)
# I'm returning these in place of Hx and Hy to not break things
return (E_nl, E_nl, E_nl, conv_array)
示例3: attractive_hubbard
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import newton_krylov [as 別名]
def attractive_hubbard(h0,mf=None,mix=0.9,g=0.0,nk=8,solver="plain",
maxerror=1e-5,**kwargs):
"""Perform the SCF mean field"""
if not h0.check_mode("spinless"): raise # sanity check
h = h0.copy() # initial Hamiltonian
if mf is None:
try: dold = inout.load(mf_file) # load the file
except: dold = np.random.random(h.intra.shape[0]) # random guess
else: dold = mf # initial guess
ii = 0
os.system("rm -f STOP") # remove stop file
def f(dold):
"""Function to minimize"""
# print("Iteration #",ii) # Iteration
h = h0.copy() # copy Hamiltonian
if os.path.exists("STOP"): return dold
h.add_swave(dold*g) # add the pairing to the Hamiltonian
t0 = time.time()
d = onsite_delta_vev(h,nk=nk,**kwargs) # compute the pairing
t1 = time.time()
print("Time in this iteration = ",t1-t0) # Difference
diff = np.max(np.abs(d-dold)) # compute the difference
print("Error = ",diff) # Difference
print("Average Pairing = ",np.mean(np.abs(d))) # Pairing
print("Maximum Pairing = ",np.max(np.abs(d))) # Pairing
print()
# ii += 1
return d
if solver=="plain":
do_scf = True
while do_scf:
d = f(dold) # new vector
dold = mix*d + (1-mix)*dold # redefine
diff = np.max(np.abs(d-dold)) # compute the difference
if diff<maxerror:
do_scf = False
else:
print("Solver used:",solver)
import scipy.optimize as optimize
if solver=="newton": fsolver = optimize.newton_krylov
elif solver=="anderson": fsolver = optimize.anderson
elif solver=="broyden": fsolver = optimize.broyden2
elif solver=="linear": fsolver = optimize.linearmixing
else: raise
def fsol(x): return x - f(x) # function to solve
dold = fsolver(fsol,dold,f_tol=maxerror)
h = h0.copy() # copy Hamiltonian
h.add_swave(dold*g) # add the pairing to the Hamiltonian
inout.save(dold,mf_file) # save the mean field
scf = SCF() # create object
scf.hamiltonian = h # store
return scf # return SCF object