當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.minimize_scalar方法代碼示例

本文整理匯總了Python中scipy.optimize.minimize_scalar方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.minimize_scalar方法的具體用法?Python optimize.minimize_scalar怎麽用?Python optimize.minimize_scalar使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.minimize_scalar方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _loglik_boxcox

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def _loglik_boxcox(self, x, bounds, options={'maxiter': 25}):
        """
        Taken from the Stata manual on Box-Cox regressions, where this is the
        special case of 'lhs only'. As an estimator for the variance, the
        sample variance is used, by means of the well-known formula.

        Parameters
        ----------
        x : array_like
        options : dict
            The options (as a dict) to be passed to the optimizer.
        """
        sum_x = np.sum(np.log(x))
        nobs = len(x)

        def optim(lmbda):
            y, lmbda = self.transform_boxcox(x, lmbda)
            return (1 - lmbda) * sum_x + (nobs / 2.) * np.log(np.var(y))

        res = minimize_scalar(optim,
                              bounds=bounds,
                              method='bounded',
                              options=options)
        return res.x 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:26,代碼來源:transform.py

示例2: estimate_mode

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def estimate_mode(acc):
    """ Estimate the mode of a set of float values between 0 and 1.

    :param acc: Data.
    :returns: The mode of the sample
    :rtype: float
    """
    # Taken from sloika.
    if len(acc) > 1:
        da = gaussian_kde(acc)
        optimization_result = minimize_scalar(lambda x: -da(x), bounds=(0, 1), method='brent')
        if optimization_result.success:
            try:
                mode = optimization_result.x[0]
            except IndexError:
                mode = optimization_result.x
            except TypeError:
                mode = optimization_result.x
        else:
            sys.stderr.write("Mode computation failed")
            mode = 0
    else:
        mode = acc[0]
    return mode 
開發者ID:nanoporetech,項目名稱:wub,代碼行數:26,代碼來源:bam_accuracy.py

示例3: fit_z

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def fit_z(locs, info, calibration, magnification_factor, filter=2):
    cx = _np.array(calibration["X Coefficients"])
    cy = _np.array(calibration["Y Coefficients"])
    z = _np.zeros_like(locs.x)
    square_d_zcalib = _np.zeros_like(z)
    sx = locs.sx
    sy = locs.sy
    for i in range(len(z)):
        result = _minimize_scalar(_fit_z_target, args=(sx[i], sy[i], cx, cy))
        z[i] = result.x
        square_d_zcalib[i] = result.fun
    z *= magnification_factor
    locs = _lib.append_to_rec(locs, z, "z")
    locs = _lib.append_to_rec(locs, _np.sqrt(square_d_zcalib), "d_zcalib")
    locs = _lib.ensure_sanity(locs, info)
    return filter_z_fits(locs, filter) 
開發者ID:jungmannlab,項目名稱:picasso,代碼行數:18,代碼來源:zfit.py

示例4: optimize_Tc

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def optimize_Tc(self):
        '''
        determines the coalescent time scale that optimizes the coalescent likelihood of the tree
        '''
        from scipy.optimize import minimize_scalar
        initial_Tc = self.Tc
        def cost(Tc):
            self.set_Tc(Tc)
            return -self.total_LH()

        sol = minimize_scalar(cost, bounds=[ttconf.TINY_NUMBER,10.0])
        if "success" in sol and sol["success"]:
            self.set_Tc(sol['x'])
        else:
            self.logger("merger_models:optimize_Tc: optimization of coalescent time scale failed: " + str(sol), 0, warn=True)
            self.set_Tc(initial_Tc.y, T=initial_Tc.x) 
開發者ID:neherlab,項目名稱:treetime,代碼行數:18,代碼來源:merger_models.py

示例5: bruteforce_isotropic_relax

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def bruteforce_isotropic_relax(eptm, geom, model):
    def to_minimize(scale):
        return scaled_unscaled(model.compute_energy, scale, eptm, geom, args=[eptm])

    optim_res = optimize.minimize_scalar(
        to_minimize, method="bounded", bounds=[1e-6, 1e2]
    )
    if optim_res["success"]:
        log.info("Scaling by factor {:.3f}".format(optim_res["x"]))
        scale = optim_res["x"]
        geom.scale(eptm, scale, eptm.coords)
        geom.update_all(eptm)
    else:
        warnings.warn("Optimisation failed")

    return optim_res 
開發者ID:DamCB,項目名稱:tyssue,代碼行數:18,代碼來源:isotropic_solver.py

示例6: fit_E_binom

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def fit_E_binom(nd, na, noprint=False, method='c', **kwargs):
    """Fit the E with MLE using binomial distribution.
    method  ('a','b', or 'c') choose how to handle negative (nd,na) values.
    """
    assert method in ['a', 'b', 'c']
    nd, na = np.round(nd).astype(int), np.round(na).astype(int)

    # The binomial distribution can not handle negative values
    # so we must find a way to "remove" the negativa values
    # a. remove bursts with neg. values, but we can skew the fit
    # b. remove bursts with nd < nd[na<0].max(), but few bursts left
    # c. remove bursts with na+nd < max(nd[na<0].max(),na[nd<0].max())
    #    giving a bit more bursts
    # NOTE: b and c have corner cases in which there are neg. bursts left
    pos_bursts = (nd>=0)*(na>=0)
    if (-pos_bursts).any():
        if not noprint: print("WARNING: Discarding negative burst sizes.")
        if method == 'a':
            # a. remove bursts with neg. values
            nd, na = nd[pos_bursts], na[pos_bursts]
        elif method == 'b':
            # b. Cut all the part with na<0 to have a less skewed estimation
            if (na < 0).any():
                nd_min = nd[na<0].max()
                nd, na = nd[nd>nd_min], na[nd>nd_min]
        elif method == 'c':
            # c. remove bursts with na+nd < max(nd[na<0].max(),na[nd<0].max())
            nt_min = 0
            if (na < 0).any():
                nt_min = nd[na<0].max()
            if (nd < 0).any():
                nt_min = max([na[nd<0].max(), nt_min])
            nd, na = nd[nd+na>nt_min], na[nd+na>nt_min]

        if not noprint: print(" - Bursts left:", nd.size)
        assert (nd>=0).all() and (na>=0).all()
    min_kwargs = dict(bounds=(0,1), method='bounded',
            options={'disp':1, 'xtol': 1e-6})
    min_kwargs.update(**kwargs)
    res = minimize_scalar(log_likelihood_binom, args=(nd,na), **min_kwargs)
    return res.x 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:43,代碼來源:fret_fit.py

示例7: fit_E_poisson_nt

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def fit_E_poisson_nt(nd, na, bg_a, **kwargs):
    """Fit the E using MLE with na extracted from a Poisson.
    """
    min_kwargs = dict(bounds=(-0.1,1.1), method='bounded',
            options={'disp':1, 'xtol': 1e-6})
    min_kwargs.update(**kwargs)
    res = minimize_scalar(log_likelihood_poisson_nt, args=(nd, na, bg_a),
            **min_kwargs)
    E = res.x
    return E 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:12,代碼來源:fret_fit.py

示例8: fit_E_poisson_na

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def fit_E_poisson_na(nd, na, bg_a, **kwargs):
    """Fit the E using MLE with na extracted from a Poisson.
    """
    min_kwargs = dict(bounds=(-0.1,1.1), method='bounded',
            options={'disp':1, 'xtol': 1e-6})
    min_kwargs.update(**kwargs)
    res = minimize_scalar(log_likelihood_poisson_na, args=(nd, na, bg_a),
            **min_kwargs)
    E = res.x
    return E 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:12,代碼來源:fret_fit.py

示例9: fit_E_poisson_nd

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def fit_E_poisson_nd(nd, na, bg_d, **kwargs):
    """Fit the E using MLE with nd extracted from a Poisson.
    """
    min_kwargs = dict(bounds=(-0.1,1.1), method='bounded',
            options={'disp':1, 'xtol': 1e-6})
    min_kwargs.update(**kwargs)
    res = minimize_scalar(log_likelihood_poisson_nd, args=(nd, na, bg_d),
            **min_kwargs)
    E = res.x
    return E 
開發者ID:tritemio,項目名稱:FRETBursts,代碼行數:12,代碼來源:fret_fit.py

示例10: updateShareLimit

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def updateShareLimit(self):
        '''
        Creates the attribute ShareLimit, representing the limiting lower bound of
        risky portfolio share as mNrm goes to infinity.
        
        Parameters
        ----------
        None

        Returns
        -------
        None
        '''
        if 'RiskyDstn' in self.time_vary:
            self.ShareLimit = []
            for t in range(self.T_cycle):
                RiskyDstn = self.RiskyDstn[t]
                temp_f = lambda s : -((1.-self.CRRA)**-1)*np.dot((self.Rfree + s*(RiskyDstn.X-self.Rfree))**(1.-self.CRRA), RiskyDstn.pmf)
                SharePF = minimize_scalar(temp_f, bounds=(0.0, 1.0), method='bounded').x
                self.ShareLimit.append(SharePF)
            self.addToTimeVary('ShareLimit')
        
        else:
            RiskyDstn = self.RiskyDstn
            temp_f = lambda s : -((1.-self.CRRA)**-1)*np.dot((self.Rfree + s*(RiskyDstn.X-self.Rfree))**(1.-self.CRRA), RiskyDstn.pmf)
            SharePF = minimize_scalar(temp_f, bounds=(0.0, 1.0), method='bounded').x
            self.ShareLimit = SharePF
            self.addToTimeInv('ShareLimit') 
開發者ID:econ-ark,項目名稱:HARK,代碼行數:30,代碼來源:ConsPortfolioModel.py

示例11: test_minimize_scalar_custom

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def test_minimize_scalar_custom(self):
        # This function comes from the documentation example.
        def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
                maxiter=100, callback=None, **options):
            bestx = (bracket[1] + bracket[0]) / 2.0
            besty = fun(bestx)
            funcalls = 1
            niter = 0
            improved = True
            stop = False

            while improved and not stop and niter < maxiter:
                improved = False
                niter += 1
                for testx in [bestx - stepsize, bestx + stepsize]:
                    testy = fun(testx, *args)
                    funcalls += 1
                    if testy < besty:
                        besty = testy
                        bestx = testx
                        improved = True
                if callback is not None:
                    callback(bestx)
                if maxfev is not None and funcalls >= maxfev:
                    stop = True
                    break

            return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
                                           nfev=funcalls, success=(niter > 1))

        res = optimize.minimize_scalar(self.fun, bracket=(0, 4), method=custmin,
                                       options=dict(stepsize=0.05))
        assert_allclose(res.x, self.solution, atol=1e-6) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:35,代碼來源:test_optimize.py

示例12: test_minimize_scalar_coerce_args_param

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def test_minimize_scalar_coerce_args_param(self):
        # Regression test for gh-3503
        optimize.minimize_scalar(self.fun, args=1.5) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:5,代碼來源:test_optimize.py

示例13: u1_peak

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def u1_peak(self, k):
		T = k * self.Tr
		self.z.cost(T)
		self.z.T = T
		self.z.p = self.z.p.reshape((-1, self.z.order + 1))
		bnds = self.get_bounds(self.u1, k)
		u1_res = minimize_scalar(lambda t: -self.u1(t), bounds=bnds, method='bounded')
		self.peaks[0] = np.abs(self.u1(u1_res.x))
		return self.peaks[0] 
開發者ID:lindemer,項目名稱:baldr,代碼行數:11,代碼來源:snap.py

示例14: theta_peak

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def theta_peak(self, k):
		T = k * self.Tr
		self.x.cost(T)
		self.x.T = T
		self.x.p = self.x.p.reshape((-1, self.x.order + 1))
		bnds = self.get_bounds(lambda t: np.abs(self.theta(t)), k)
		theta_res = minimize_scalar(lambda t: -np.abs(self.theta(t)), bounds=bnds, method='bounded')
		self.peaks[3] = np.abs(self.theta(theta_res.x))
		return self.peaks[3] 
開發者ID:lindemer,項目名稱:baldr,代碼行數:11,代碼來源:snap.py

示例15: phi_peak

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize_scalar [as 別名]
def phi_peak(self, k):
		T = k * self.Tr
		self.y.cost(T)
		self.y.T = T
		self.y.p = self.y.p.reshape((-1, self.y.order + 1))
		bnds = self.get_bounds(lambda t: np.abs(self.phi(t)), k)
		phi_res = minimize_scalar(lambda t: -np.abs(self.phi(t)), bounds=bnds, method='bounded')
		self.peaks[4] = np.abs(self.phi(phi_res.x))
		return self.peaks[4]		

	# Returns a set of bounds for the minimizer to use. Necessary for accurate 
	# minimization of non-convex functions such as u1, u2, u3, and u4. This is 
	# a BRUTE FORCE method. We take rezo samples per piecewise polynomial
	# segment, find the time which results in the maximum, and return the two
	# time samples adjacent to that time. 
開發者ID:lindemer,項目名稱:baldr,代碼行數:17,代碼來源:snap.py


注:本文中的scipy.optimize.minimize_scalar方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。