當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.minimize方法代碼示例

本文整理匯總了Python中scipy.optimize.minimize方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.minimize方法的具體用法?Python optimize.minimize怎麽用?Python optimize.minimize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.minimize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_bounded

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_bounded(make_quadratic, make_random):

    random = make_random
    a, b, c, data, bounds = make_quadratic
    w0 = np.concatenate((random.randn(2), [1.5]))

    res = minimize(qobj, w0, args=(data,), jac=True, bounds=bounds,
                   method='L-BFGS-B')
    Ea_bfgs, Eb_bfgs, Ec_bfgs = res['x']

    res = sgd(qobj, w0, data, bounds=bounds, eval_obj=True,
              random_state=random)
    Ea_sgd, Eb_sgd, Ec_sgd = res['x']

    assert np.allclose((Ea_bfgs, Eb_bfgs, Ec_bfgs),
                       (Ea_sgd, Eb_sgd, Ec_sgd),
                       atol=5e-2, rtol=0) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:19,代碼來源:test_optimize.py

示例2: _calculate_CAR

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def _calculate_CAR(self, time, magnitude, error, minimize_method):
        magnitude = magnitude.copy()
        time = time.copy()
        error = error.copy() ** 2

        x0 = [10, 0.5]
        bnds = ((0, 100), (0, 100))
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore")
            res = minimize(
                _car_like,
                x0,
                args=(time, magnitude, error),
                method=minimize_method,
                bounds=bnds,
            )
        sigma, tau = res.x[0], res.x[1]
        return sigma, tau 
開發者ID:quatrope,項目名稱:feets,代碼行數:20,代碼來源:ext_car.py

示例3: linear_regression_np

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def linear_regression_np(X, y, l=1):
    """linear regression
    args:
        X: feature matrix, (m, n+1) # with incercept x0=1
        y: target vector, (m, )
        l: lambda constant for regularization

    return: trained parameters
    """
    # init theta
    theta = np.ones(X.shape[1])

    # train it
    res = opt.minimize(fun=regularized_cost,
                       x0=theta,
                       args=(X, y, l),
                       method='TNC',
                       jac=regularized_gradient,
                       options={'disp': True})
    return res 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:22,代碼來源:6_bias_variance.py

示例4: betaseries_file

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def betaseries_file(tmpdir_factory,
                    deriv_betaseries_fname=deriv_betaseries_fname):
    bfile = tmpdir_factory.mktemp("beta").ensure(deriv_betaseries_fname)
    np.random.seed(3)
    num_trials = 40
    tgt_corr = 0.1
    bs1 = np.random.rand(num_trials)
    # create another betaseries with a target correlation
    bs2 = minimize(lambda x: abs(tgt_corr - pearsonr(bs1, x)[0]),
                   np.random.rand(num_trials)).x

    # two identical beta series
    bs_data = np.array([[[bs1, bs2]]])

    # the nifti image
    bs_img = nib.Nifti1Image(bs_data, np.eye(4))
    bs_img.to_filename(str(bfile))

    return bfile 
開發者ID:HBClab,項目名稱:NiBetaSeries,代碼行數:21,代碼來源:conftest.py

示例5: invert_bfgs

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def invert_bfgs(gen_model, invert_model, ftr_model, im, z_predict=None, npx=64):
    _f, z = invert_model
    nz = gen_model.nz
    if z_predict is None:
        z_predict = np_rng.uniform(-1., 1., size=(1, nz))
    else:
        z_predict = floatX(z_predict)
    z_predict = np.arctanh(z_predict)
    im_t = gen_model.transform(im)
    ftr = ftr_model(im_t)

    prob = optimize.minimize(f_bfgs, z_predict, args=(_f, im_t, ftr),
                             tol=1e-6, jac=True, method='L-BFGS-B', options={'maxiter': 200})
    print('n_iters = %3d, f = %.3f' % (prob.nit, prob.fun))
    z_opt = prob.x
    z_opt_n = floatX(z_opt[np.newaxis, :])
    [f_opt, g, gx] = _f(z_opt_n, im_t, ftr)
    gx = gen_model.inverse_transform(gx, npx=npx)
    z_opt = np.tanh(z_opt)
    return gx, z_opt, f_opt 
開發者ID:junyanz,項目名稱:iGAN,代碼行數:22,代碼來源:iGAN_predict.py

示例6: test_unbounded

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_unbounded(make_quadratic, make_random):

    random = make_random
    a, b, c, data, _ = make_quadratic
    w0 = random.randn(3)

    assert_opt = lambda Ea, Eb, Ec: \
        np.allclose((a, b, c), (Ea, Eb, Ec), atol=1e-3, rtol=0)

    for updater in [SGDUpdater, AdaDelta, AdaGrad, Momentum, Adam]:
        res = sgd(qobj, w0, data, eval_obj=True, updater=updater(),
                  random_state=make_random)
        assert_opt(*res['x'])

    res = minimize(qobj, w0, args=(data,), jac=True, method='L-BFGS-B')
    assert_opt(*res['x'])

    res = minimize(qfun, w0, args=(data,), jac=qgrad, method='L-BFGS-B')
    assert_opt(*res['x'])

    res = minimize(qfun, w0, args=(data), jac=False, method=None)
    assert_opt(*res['x']) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:24,代碼來源:test_optimize.py

示例7: test_structured_params

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_structured_params(make_quadratic, make_random):

    random = make_random
    a, b, c, data, _ = make_quadratic
    w0 = [Parameter(random.randn(2), Bound()),
          Parameter(random.randn(1), Bound())
          ]

    qobj_struc = lambda w12, w3, data: q_struc(w12, w3, data, qobj)
    assert_opt = lambda Eab, Ec: \
        np.allclose((a, b, c), (Eab[0], Eab[1], Ec), atol=1e-3, rtol=0)

    nmin = structured_minimizer(minimize)
    res = nmin(qobj_struc, w0, args=(data,), jac=True, method='L-BFGS-B')
    assert_opt(*res.x)

    nsgd = structured_sgd(sgd)
    res = nsgd(qobj_struc, w0, data, eval_obj=True,
               random_state=make_random)
    assert_opt(*res.x)

    qf_struc = lambda w12, w3, data: q_struc(w12, w3, data, qfun)
    qg_struc = lambda w12, w3, data: q_struc(w12, w3, data, qgrad)
    res = nmin(qf_struc, w0, args=(data,), jac=qg_struc, method='L-BFGS-B')
    assert_opt(*res.x) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:27,代碼來源:test_optimize.py

示例8: test_log_params

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_log_params(make_quadratic, make_random):

    random = make_random
    a, b, c, data, _ = make_quadratic
    w0 = np.abs(random.randn(3))
    bounds = [Positive(), Bound(), Positive()]

    assert_opt = lambda Ea, Eb, Ec: \
        np.allclose((a, b, c), (Ea, Eb, Ec), atol=1e-3, rtol=0)

    nmin = logtrick_minimizer(minimize)
    res = nmin(qobj, w0, args=(data,), jac=True, method='L-BFGS-B',
               bounds=bounds)
    assert_opt(*res.x)

    nsgd = logtrick_sgd(sgd)
    res = nsgd(qobj, w0, data, eval_obj=True, bounds=bounds,
               random_state=make_random)
    assert_opt(*res.x)

    nmin = logtrick_minimizer(minimize)
    res = nmin(qfun, w0, args=(data,), jac=qgrad, method='L-BFGS-B',
               bounds=bounds)
    assert_opt(*res.x) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:26,代碼來源:test_optimize.py

示例9: test_logstruc_params

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_logstruc_params(make_quadratic, make_random):

    random = make_random
    a, b, c, data, _ = make_quadratic

    w0 = [Parameter(random.gamma(2, size=(2,)), Positive()),
          Parameter(random.randn(), Bound())
          ]

    qobj_struc = lambda w12, w3, data: q_struc(w12, w3, data, qobj)
    assert_opt = lambda Eab, Ec: \
        np.allclose((a, b, c), (Eab[0], Eab[1], Ec), atol=1e-3, rtol=0)

    nmin = structured_minimizer(logtrick_minimizer(minimize))
    res = nmin(qobj_struc, w0, args=(data,), jac=True, method='L-BFGS-B')
    assert_opt(*res.x)

    nsgd = structured_sgd(logtrick_sgd(sgd))
    res = nsgd(qobj_struc, w0, data, eval_obj=True, random_state=make_random)
    assert_opt(*res.x)

    qf_struc = lambda w12, w3, data: q_struc(w12, w3, data, qfun)
    qg_struc = lambda w12, w3, data: q_struc(w12, w3, data, qgrad)
    res = nmin(qf_struc, w0, args=(data,), jac=qg_struc, method='L-BFGS-B')
    assert_opt(*res.x) 
開發者ID:NICTA,項目名稱:revrand,代碼行數:27,代碼來源:test_optimize.py

示例10: _optimization_function

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def _optimization_function(self, objective_function: Callable[[base.ArrayLike], float]) -> base.ArrayLike:
        # pylint:disable=unused-argument
        budget = np.inf if self.budget is None else self.budget
        best_res = np.inf
        best_x: np.ndarray = self.current_bests["average"].x  # np.zeros(self.dimension)
        if self.initial_guess is not None:
            best_x = np.array(self.initial_guess, copy=True)  # copy, just to make sure it is not modified
        remaining = budget - self._num_ask
        while remaining > 0:  # try to restart if budget is not elapsed
            options: Dict[str, int] = {} if self.budget is None else {"maxiter": remaining}
            res = scipyoptimize.minimize(
                objective_function,
                best_x if not self.random_restart else self._rng.normal(0.0, 1.0, self.dimension),
                method=self.method,
                options=options,
                tol=0,
            )
            if res.fun < best_res:
                best_res = res.fun
                best_x = res.x
            remaining = budget - self._num_ask
        return best_x 
開發者ID:facebookresearch,項目名稱:nevergrad,代碼行數:24,代碼來源:recastlib.py

示例11: __init__

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def __init__(self, function: Function, bounds=None, *args, **kwargs):
        """
        Initialize a :class:`Minimizer`.

        Args:
            function: :class:`Function` that will be minimized.
            bounds: :class:`Bounds` defining the domain of the minimization \
                    process. If it is ``None`` the :class:`Function` :class:`Bounds` \
                    will be used.
            *args: Passed to ``scipy.optimize.minimize``.
            **kwargs: Passed to ``scipy.optimize.minimize``.

        """
        self.env = function
        self.function = function.function
        self.bounds = self.env.bounds if bounds is None else bounds
        self.args = args
        self.kwargs = kwargs 
開發者ID:FragileTech,項目名稱:fragile,代碼行數:20,代碼來源:env.py

示例12: minimize

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def minimize(self, x: numpy.ndarray):
        """
        Apply ``scipy.optimize.minimize`` to a single point.

        Args:
            x: Array representing a single point of the function to be minimized.

        Returns:
            Optimization result object returned by ``scipy.optimize.minimize``.

        """

        def _optimize(_x):
            try:
                _x = _x.reshape((1,) + _x.shape)
                y = self.function(_x)
            except (ZeroDivisionError, RuntimeError):
                y = numpy.inf
            return y

        bounds = ScipyBounds(
            ub=self.bounds.high if self.bounds is not None else None,
            lb=self.bounds.low if self.bounds is not None else None,
        )
        return minimize(_optimize, x, bounds=bounds, *self.args, **self.kwargs) 
開發者ID:FragileTech,項目名稱:fragile,代碼行數:27,代碼來源:env.py

示例13: minimize_point

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def minimize_point(self, x: numpy.ndarray) -> Tuple[numpy.ndarray, Scalar]:
        """
        Minimize the target function passing one starting point.

        Args:
            x: Array representing a single point of the function to be minimized.

        Returns:
            Tuple containing a numpy array representing the best solution found, \
            and the numerical value of the function at that point.

        """
        optim_result = self.minimize(x)
        point = optim_result["x"]
        reward = float(optim_result["fun"])
        return point, reward 
開發者ID:FragileTech,項目名稱:fragile,代碼行數:18,代碼來源:env.py

示例14: anneal_schedule

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def anneal_schedule(self, schedule='fast', use_wrapper=False):
        """ Call anneal algorithm using specified schedule """
        n = 0  # index of test function
        if use_wrapper:
            opts = {'upper': self.upper[n],
                    'lower': self.lower[n],
                    'ftol': 1e-3,
                    'maxiter': self.maxiter,
                    'schedule': schedule,
                    'disp': False}
            res = minimize(self.fun[n], self.x0[n], method='anneal',
                               options=opts)
            x, retval = res['x'], res['status']
        else:
            x, retval = anneal(self.fun[n], self.x0[n], full_output=False,
                               upper=self.upper[n], lower=self.lower[n],
                               feps=1e-3, maxiter=self.maxiter,
                               schedule=schedule, disp=False)

        assert_almost_equal(x, self.sol[n], 2)
        return retval 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:23,代碼來源:test_anneal.py

示例15: test_minimize_l_bfgs_b_ftol

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import minimize [as 別名]
def test_minimize_l_bfgs_b_ftol(self):
        # Check that the `ftol` parameter in l_bfgs_b works as expected
        v0 = None
        for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
            opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
            sol = optimize.minimize(self.func, self.startparams,
                                    method='L-BFGS-B', jac=self.grad,
                                    options=opts)
            v = self.func(sol.x)

            if v0 is None:
                v0 = v
            else:
                assert_(v < v0)

            assert_allclose(v, self.func(self.solution), rtol=tol) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_optimize.py


注:本文中的scipy.optimize.minimize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。