本文整理匯總了Python中scipy.optimize.linear_sum_assignment方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.linear_sum_assignment方法的具體用法?Python optimize.linear_sum_assignment怎麽用?Python optimize.linear_sum_assignment使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.linear_sum_assignment方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _sanitize_dists
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def _sanitize_dists(self, dists):
"""Replace invalid distances."""
dists = np.copy(dists)
# Note there is an issue in scipy.optimize.linear_sum_assignment where
# it runs forever if an entire row/column is infinite or nan. We therefore
# make a copy of the distance matrix and compute a safe value that indicates
# 'cannot assign'. Also note + 1 is necessary in below inv-dist computation
# to make invdist bigger than max dist in case max dist is zero.
valid_dists = dists[np.isfinite(dists)]
INVDIST = 2 * valid_dists.max() + 1 if valid_dists.shape[0] > 0 else 1.
dists[~np.isfinite(dists)] = INVDIST
return dists, INVDIST
示例2: unsupervised_clustering_accuracy
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def unsupervised_clustering_accuracy(
y: Union[np.ndarray, torch.Tensor], y_pred: Union[np.ndarray, torch.Tensor]
) -> tuple:
"""Unsupervised Clustering Accuracy
"""
assert len(y_pred) == len(y)
u = np.unique(np.concatenate((y, y_pred)))
n_clusters = len(u)
mapping = dict(zip(u, range(n_clusters)))
reward_matrix = np.zeros((n_clusters, n_clusters), dtype=np.int64)
for y_pred_, y_ in zip(y_pred, y):
if y_ in mapping:
reward_matrix[mapping[y_pred_], mapping[y_]] += 1
cost_matrix = reward_matrix.max() - reward_matrix
row_assign, col_assign = linear_sum_assignment(cost_matrix)
# Construct optimal assignments matrix
row_assign = row_assign.reshape((-1, 1)) # (n,) to (n, 1) reshape
col_assign = col_assign.reshape((-1, 1)) # (n,) to (n, 1) reshape
assignments = np.concatenate((row_assign, col_assign), axis=1)
optimal_reward = reward_matrix[row_assign, col_assign].sum() * 1.0
return optimal_reward / y_pred.size, assignments
示例3: test_linear_sum_assignment_input_validation
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def test_linear_sum_assignment_input_validation():
assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])
C = [[1, 2, 3], [4, 5, 6]]
assert_array_equal(linear_sum_assignment(C),
linear_sum_assignment(np.asarray(C)))
assert_array_equal(linear_sum_assignment(C),
linear_sum_assignment(np.matrix(C)))
I = np.identity(3)
assert_array_equal(linear_sum_assignment(I.astype(np.bool)),
linear_sum_assignment(I))
assert_raises(ValueError, linear_sum_assignment, I.astype(str))
I[0][0] = np.nan
assert_raises(ValueError, linear_sum_assignment, I)
I = np.identity(3)
I[1][1] = np.inf
assert_raises(ValueError, linear_sum_assignment, I)
示例4: _assign_posterior
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def _assign_posterior(self):
"""assign posterior to prior based on Hungarian algorithm
Returns
-------
TFA
Returns the instance itself.
"""
prior_centers = self.get_centers(self.local_prior)
posterior_centers = self.get_centers(self.local_posterior_)
posterior_widths = self.get_widths(self.local_posterior_)
# linear assignment on centers
cost = distance.cdist(prior_centers, posterior_centers, 'euclidean')
_, col_ind = linear_sum_assignment(cost)
# reorder centers/widths based on cost assignment
self.set_centers(self.local_posterior_, posterior_centers[col_ind])
self.set_widths(self.local_posterior_, posterior_widths[col_ind])
return self
示例5: cluster_accuracy
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def cluster_accuracy(y_true, y_predicted, cluster_number: Optional[int] = None):
"""
Calculate clustering accuracy after using the linear_sum_assignment function in SciPy to
determine reassignments.
:param y_true: list of true cluster numbers, an integer array 0-indexed
:param y_predicted: list of predicted cluster numbers, an integer array 0-indexed
:param cluster_number: number of clusters, if None then calculated from input
:return: reassignment dictionary, clustering accuracy
"""
if cluster_number is None:
cluster_number = (
max(y_predicted.max(), y_true.max()) + 1
) # assume labels are 0-indexed
count_matrix = np.zeros((cluster_number, cluster_number), dtype=np.int64)
for i in range(y_predicted.size):
count_matrix[y_predicted[i], y_true[i]] += 1
row_ind, col_ind = linear_sum_assignment(count_matrix.max() - count_matrix)
reassignment = dict(zip(row_ind, col_ind))
accuracy = count_matrix[row_ind, col_ind].sum() / y_predicted.size
return reassignment, accuracy
示例6: bipartite_match
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def bipartite_match(pred, gt, n_classes=None, presence=None):
"""Does maximum biprartite matching between `pred` and `gt`."""
if n_classes is not None:
n_gt_labels, n_pred_labels = n_classes, n_classes
else:
n_gt_labels = np.unique(gt).shape[0]
n_pred_labels = np.unique(pred).shape[0]
cost_matrix = np.zeros([n_gt_labels, n_pred_labels], dtype=np.int32)
for label in range(n_gt_labels):
label_idx = (gt == label)
for new_label in range(n_pred_labels):
errors = np.equal(pred[label_idx], new_label).astype(np.float32)
if presence is not None:
errors *= presence[label_idx]
num_errors = errors.sum()
cost_matrix[label, new_label] = -num_errors
row_idx, col_idx = linear_sum_assignment(cost_matrix)
num_correct = -cost_matrix[row_idx, col_idx].sum()
acc = float(num_correct) / gt.shape[0]
return AttrDict(assingment=(row_idx, col_idx), acc=acc,
num_correct=num_correct)
示例7: Hungarian
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def Hungarian(A):
_, col_ind = linear_sum_assignment(A)
# Cost can be found as A[row_ind, col_ind].sum()
return col_ind
示例8: linear_assignment
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def linear_assignment(cost_matrix):
try:
import lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True)
return np.array([[y[i],i] for i in x if i >= 0]) #
except ImportError:
from scipy.optimize import linear_sum_assignment
x, y = linear_sum_assignment(cost_matrix)
return np.array(list(zip(x, y)))
示例9: _assign_unique_in_plate
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def _assign_unique_in_plate(self, plate):
preds = np.array(list(map(itemgetter(1), plate)))
preds = np.vectorize(lambda x: x if x != -np.inf else -1e10)(preds)
_, indices = linear_sum_assignment(-preds)
return [(k, v.item()) for (k, _), v in zip(plate, indices)]
示例10: compute_mean_IoU
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def compute_mean_IoU(S_mask, IoU):
n_data = IoU.shape[0]
n_seg_ids = IoU.shape[1]
K = IoU.shape[2]
sum_mean_IoU = 0.
for k in range(n_data):
assert(K >= np.sum(S_mask[k]))
sum_IoU = 0.
count = 0
row_ind, col_ind = linear_sum_assignment(-IoU[k])
assert(len(row_ind) == min(n_seg_ids, K))
assert(len(col_ind) == min(n_seg_ids, K))
for (i, j) in zip(row_ind, col_ind):
# NOTE:
# Ignore when the label does not exist in the shape.
if not S_mask[k,i]:
assert(IoU[k,i,j] == 0.)
continue
sum_IoU += IoU[k,i,j]
count += 1
sum_mean_IoU += sum_IoU / float(count)
mean_IoU = sum_mean_IoU / float(n_data)
return mean_IoU
示例11: clustering_accuracy
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def clustering_accuracy(gtlabels, labels):
cost_matrix = []
categories = np.unique(gtlabels)
nr = np.amax(labels) + 1
for i in np.arange(len(categories)):
cost_matrix.append(np.bincount(labels[gtlabels == categories[i]], minlength=nr))
cost_matrix = np.asarray(cost_matrix).T
row_ind, col_ind = linear_sum_assignment(np.max(cost_matrix) - cost_matrix)
return float(cost_matrix[row_ind, col_ind].sum()) / len(gtlabels)
示例12: matching_upd_j
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def matching_upd_j(weights_j, global_weights, sigma_inv_j, global_sigmas, prior_mean_norm, prior_inv_sigma,
popularity_counts, gamma, J):
L = global_weights.shape[0]
full_cost = compute_cost(global_weights, weights_j, global_sigmas, sigma_inv_j, prior_mean_norm, prior_inv_sigma,
popularity_counts, gamma, J)
row_ind, col_ind = linear_sum_assignment(-full_cost)
assignment_j = []
new_L = L
for l, i in zip(row_ind, col_ind):
if i < L:
popularity_counts[i] += 1
assignment_j.append(i)
global_weights[i] += weights_j[l]
global_sigmas[i] += sigma_inv_j
else: # new neuron
popularity_counts += [1]
assignment_j.append(new_L)
new_L += 1
global_weights = np.vstack((global_weights, prior_mean_norm + weights_j[l]))
global_sigmas = np.vstack((global_sigmas, prior_inv_sigma + sigma_inv_j))
return global_weights, global_sigmas, popularity_counts, assignment_j
示例13: _get_linear_assignment_results
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def _get_linear_assignment_results(self, dist_matrix, query_ids, gallery_ids):
# get matched id
row_ind, col_ind = linear_sum_assignment(dist_matrix)
match_ids = [None] * len(query_ids)
for i in range(row_ind.shape[0]):
match_ids[row_ind[i]] = gallery_ids[col_ind[i]]
# get matched scores
match_distances = [1.] * len(query_ids)
for i in range(row_ind.shape[0]):
match_distances[row_ind[i]] = dist_matrix[row_ind[i], col_ind[i]]
match_similarity = [1 - dist for dist in match_distances]
for i in range(len(match_similarity)):
if match_similarity[i] >= 2:
match_ids[i] = None
match_similarity[i] = 0.
duplicate_ids = [item for item, count in collections.Counter(match_ids).items() if count > 1]
for dup_id in duplicate_ids:
indexes = list(np.where(np.array(match_ids) == dup_id)[0])
duplicate_patch_scores = np.array(match_similarity)[indexes]
max_score_index = list(duplicate_patch_scores).index(max(list(duplicate_patch_scores)))
del indexes[max_score_index]
for index in indexes:
match_ids[index] = None
match_similarity[index] = 0.
return np.array(match_ids), np.array(match_similarity)
示例14: soft_to_hard_permutation
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def soft_to_hard_permutation(inputs):
"""Returns permutation matrices by solving a matching problem.
Solves linear sum assignment to convert doubly-stochastic matrices to
permutation matrices. It uses scipy.optimize.linear_sum_assignment to solve
the optimization problem max_P sum_i,j M_i,j P_i,j with P a permutation
matrix. Notice the negative sign; the reason, the original function solves a
minimization problem.
Code is adapted from Mena et al. [1].
[1] Gonzalo Mena, David Belanger, Scott Linderman, Jasper Snoek.
Learning latent permutations with Gumbel-Sinkhorn networks. International
Conference on Learning Representations, 2018.
Args:
inputs: A `Tensor` with shape `[:, vocab_size, vocab_size]` that is
doubly-stochastic in its last two dimensions.
Returns:
outputs: A hard permutation `Tensor` with the same shape as `inputs` (in
other words the last two dimensions are doubly-stochastic and each element
is 0 or 1).
"""
def hungarian(x):
if x.ndim == 2:
x = np.reshape(x, [1, x.shape[0], x.shape[1]])
sol = np.zeros((x.shape[0], x.shape[1]), dtype=np.int32)
for i in range(x.shape[0]):
sol[i, :] = linear_sum_assignment(-x[i, :])[1].astype(np.int32)
return sol
vocab_size = inputs.shape[-1]
# Note: tf.py_func isn't currently supported on headless GPUs.
# TODO(vafa): Fix tf.py_func headless GPU bug.
permutation_lists = tf.py_func(hungarian, [inputs], tf.int32)
hard = tf.one_hot(permutation_lists, depth=vocab_size)
outputs = tf.stop_gradient(hard - inputs) + inputs
return outputs
示例15: hungarian_matching
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import linear_sum_assignment [as 別名]
def hungarian_matching(pred_loc, target_loc):
# pred_loc = pred_loc.data.cpu().numpy()
# target_loc = target_loc.data.cpu().numpy()
cost_matrix = cdist(target_loc, pred_loc)
row_ind, col_ind = linear_sum_assignment(cost_matrix)
return col_ind