本文整理匯總了Python中scipy.optimize.leastsq方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.leastsq方法的具體用法?Python optimize.leastsq怎麽用?Python optimize.leastsq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.leastsq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_random
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def fit_random(self, ntries=10, rvs_generator=None, nparams=None):
'''fit with random starting values
this could be replaced with a global fitter
'''
if nparams is None:
nparams = self.nparams
if rvs_generator is None:
rvs = np.random.uniform(low=-10, high=10, size=(ntries, nparams))
else:
rvs = rvs_generator(size=(ntries, nparams))
results = np.array([np.r_[self.fit_minimal(rv), rv] for rv in rvs])
#selct best results and check how many solutions are within 1e-6 of best
#not sure what leastsq returns
return results
示例2: test_regression_2639
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def test_regression_2639(self):
# This test fails if epsfcn in leastsq is too large.
x = [574.14200000000005, 574.154, 574.16499999999996,
574.17700000000002, 574.18799999999999, 574.19899999999996,
574.21100000000001, 574.22199999999998, 574.23400000000004,
574.245]
y = [859.0, 997.0, 1699.0, 2604.0, 2013.0, 1964.0, 2435.0,
1550.0, 949.0, 841.0]
guess = [574.1861428571428, 574.2155714285715, 1302.0, 1302.0,
0.0035019999999983615, 859.0]
good = [ 5.74177150e+02, 5.74209188e+02, 1.74187044e+03, 1.58646166e+03,
1.0068462e-02, 8.57450661e+02]
def f_double_gauss(x, x0, x1, A0, A1, sigma, c):
return (A0*np.exp(-(x-x0)**2/(2.*sigma**2))
+ A1*np.exp(-(x-x1)**2/(2.*sigma**2)) + c)
popt, pcov = curve_fit(f_double_gauss, x, y, guess, maxfev=10000)
assert_allclose(popt, good, rtol=1e-5)
示例3: error
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def error(params, xs, ys):
"""A callback function for use with :func:`scipy.optimize.leastsq` to compute
the residuals given a set of parameters, x, and y
Parameters
----------
params : list
The model's parameters, a list of floats
xs : :class:`np.ndarray`
The time array to predict with respect to.
ys : :class:`np.ndarray`
The intensity array to predict against
Returns
-------
:class:`np.ndarray`:
The residuals of ``ys - self.shape(params, x)`` with optional penalty terms
"""
raise NotImplementedError()
示例4: guess
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def guess(xs, ys):
"""Get crude estimates of roughly where to start fitting parameters
The results are by no means accurate, but will serve as a reasonable starting point
for :func:`scipy.optimize.leastsq`.
Parameters
----------
xs : :class:`np.ndarray`
The time array to predict with respect to.
ys : :class:`np.ndarray`
The intensity array to predict against
Returns
-------
list
"""
raise NotImplementedError()
示例5: fit
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def fit(self):
"""Fit E(V) model, fill ``self.params``."""
# Quadratic fit to get an initial guess for the parameters.
# Thanks: https://github.com/materialsproject/pymatgen
# -> pymatgen/io/abinitio/eos.py
a, b, c = np.polyfit(self.volume, self.energy, 2)
v0 = -b/(2*a)
e0 = a*v0**2 + b*v0 + c
b0 = 2*a*v0
b1 = 4 # b1 is usually a small number like 4
if not self.volume.min() < v0 and v0 < self.volume.max():
raise Exception('The minimum volume of a fitted parabola is not in the input volumes')
# need to use lst2dct and dct2lst here to keep the order of parameters
pp0_dct = dict(e0=e0, b0=b0, b1=b1, v0=v0)
target = lambda pp, v: self.energy - self.func(v, self.func.lst2dct(pp))
pp_opt, ierr = leastsq(target,
self.func.dct2lst(pp0_dct),
args=(self.volume,))
self.params = self.func.lst2dct(pp_opt)
示例6: gaussian_fit_curve
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def gaussian_fit_curve(x, y, mu0=0, sigma0=1, a0=None, return_all=False,
**kwargs):
"""Gaussian fit of curve (x,y).
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
`kwargs` are passed to the leastsq() function.
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq is returned.
"""
if a0 is None:
gauss_pdf = lambda x, m, s: np.exp(-((x-m)**2)/(2*s**2))/\
(np.sqrt(2*np.pi)*s)
err_fun = lambda p, x, y: gauss_pdf(x, *p) - y
res = leastsq(err_fun, x0=[mu0, sigma0], args=(x, y), **kwargs)
else:
gauss_fun = lambda x, m, s, a: a*np.sign(s)*np.exp(-((x-m)**2)/(2*s**2))
err_fun = lambda p, x, y: gauss_fun(x, *p) - y
res = leastsq(err_fun, x0=[mu0, sigma0, a0], args=(x, y), **kwargs)
if 'full_output' in kwargs:
return_all = kwargs['full_output']
mu, sigma = res[0][0], res[0][1]
if return_all: return res
return mu, sigma
示例7: gaussian_fit_pdf
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def gaussian_fit_pdf(s, mu0=0, sigma0=1, a0=1, return_all=False,
leastsq_kwargs={}, **kwargs):
"""Gaussian fit of samples s using a fit to the empirical PDF.
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
`kwargs` are passed to get_epdf().
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the PDF curve is returned.
"""
## Empirical PDF
epdf = get_epdf(s, **kwargs)
res = gaussian_fit_curve(epdf[0], epdf[1], mu0, sigma0, a0, return_all,
**leastsq_kwargs)
if return_all: return res, epdf
return res
示例8: gaussian_fit_hist
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def gaussian_fit_hist(s, mu0=0, sigma0=1, a0=None, bins=np.r_[-0.5:1.5:0.001],
return_all=False, leastsq_kwargs={}, weights=None, **kwargs):
"""Gaussian fit of samples s fitting the hist to a Gaussian function.
If a0 is None then only (mu,sigma) are fitted (to a gaussian density).
kwargs are passed to the histogram function.
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the histogram is returned.
`weights` optional weights for the histogram.
"""
histogram_kwargs = dict(bins=bins, density=True, weights=weights)
histogram_kwargs.update(**kwargs)
H = np.histogram(s, **histogram_kwargs)
x, y = 0.5*(H[1][:-1] + H[1][1:]), H[0]
#bar(H[1][:-1], H[0], H[1][1]-H[1][0], alpha=0.3)
res = gaussian_fit_curve(x, y, mu0, sigma0, a0, return_all,
**leastsq_kwargs)
if return_all: return res, H, x, y
return res
示例9: gaussian_fit_cdf
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def gaussian_fit_cdf(s, mu0=0, sigma0=1, return_all=False, **leastsq_kwargs):
"""Gaussian fit of samples s fitting the empirical CDF.
Additional kwargs are passed to the leastsq() function.
If return_all=False then return only the fitted (mu,sigma) values
If return_all=True (or full_output=True is passed to leastsq)
then the full output of leastsq and the histogram is returned.
"""
## Empirical CDF
ecdf = [np.sort(s), np.arange(0.5, s.size+0.5)*1./s.size]
## Analytical Gaussian CDF
gauss_cdf = lambda x, mu, sigma: 0.5*(1+erf((x-mu)/(np.sqrt(2)*sigma)))
## Fitting the empirical CDF
err_func = lambda p, x, y: y - gauss_cdf(x, p[0], p[1])
res = leastsq(err_func, x0=[mu0, sigma0], args=(ecdf[0], ecdf[1]),
**leastsq_kwargs)
if return_all: return res, ecdf
return res[0]
示例10: two_gaussian_fit_curve
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def two_gaussian_fit_curve(x, y, p0, return_all=False, verbose=False, **kwargs):
"""Fit a 2-gaussian mixture to the (x,y) curve.
`kwargs` are passed to the leastsq() function.
If return_all=False then return only the fitted paramaters
If return_all=True then the full output of leastsq is returned.
"""
if kwargs['method'] == 'leastsq':
kwargs.pop('method')
kwargs.pop('bounds')
def err_func(p, x, y):
return (y - two_gauss_mix_pdf(x, p))
res = leastsq(err_func, x0=p0, args=(x, y), **kwargs)
p = res[0]
else:
def err_func(p, x, y):
return ((y - two_gauss_mix_pdf(x, p))**2).sum()
res = minimize(err_func, x0=p0, args=(x, y), **kwargs)
p = res.x
if verbose:
print(res, '\n')
if return_all: return res
return reorder_parameters(p)
示例11: gaussian2d_fit
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def gaussian2d_fit(sx, sy, guess=[0.5,1]):
"""2D-Gaussian fit of samples S using a fit to the empirical CDF."""
assert sx.size == sy.size
## Empirical CDF
ecdfx = [np.sort(sx), np.arange(0.5,sx.size+0.5)*1./sx.size]
ecdfy = [np.sort(sy), np.arange(0.5,sy.size+0.5)*1./sy.size]
## Analytical gaussian CDF
gauss_cdf = lambda x, mu, sigma: 0.5*(1+erf((x-mu)/(np.sqrt(2)*sigma)))
## Fitting the empirical CDF
fitfunc = lambda p, x: gauss_cdf(x, p[0], p[1])
errfunc = lambda p, x, y: fitfunc(p, x) - y
px,v = leastsq(errfunc, x0=guess, args=(ecdfx[0],ecdfx[1]))
py,v = leastsq(errfunc, x0=guess, args=(ecdfy[0],ecdfy[1]))
print("2D Gaussian CDF fit", px, py)
mux, sigmax = px[0], px[1]
muy, sigmay = py[0], py[1]
return mux, sigmax, muy, sigmay
示例12: LinearB
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def LinearB(Xi, Yi):
X = np.asfarray(Xi)
Y = np.asfarray(Yi)
# we want a function y = m * x + b
def fp(v, x):
return x * v[0] + v[1]
# the error of the function e = x - y
def e(v, x, y):
return (fp(v, x) - y)
# the initial value of m, we choose 1, because we thought YODA would
# have chosen 1
v0 = np.array([1.0, 1.0])
vr, _success = leastsq(e, v0, args=(X, Y))
# compute the R**2 (sqrt of the mean of the squares of the errors)
err = np.sqrt(sum(np.square(e(vr, X, Y))) / (len(X) * len(X)))
# print vr, success, err
return vr, err
示例13: test_regression_2639
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def test_regression_2639(self):
# This test fails if epsfcn in leastsq is too large.
x = [574.14200000000005, 574.154, 574.16499999999996,
574.17700000000002, 574.18799999999999, 574.19899999999996,
574.21100000000001, 574.22199999999998, 574.23400000000004,
574.245]
y = [859.0, 997.0, 1699.0, 2604.0, 2013.0, 1964.0, 2435.0,
1550.0, 949.0, 841.0]
guess = [574.1861428571428, 574.2155714285715, 1302.0, 1302.0,
0.0035019999999983615, 859.0]
good = [5.74177150e+02, 5.74209188e+02, 1.74187044e+03, 1.58646166e+03,
1.0068462e-02, 8.57450661e+02]
def f_double_gauss(x, x0, x1, A0, A1, sigma, c):
return (A0*np.exp(-(x-x0)**2/(2.*sigma**2))
+ A1*np.exp(-(x-x1)**2/(2.*sigma**2)) + c)
popt, pcov = curve_fit(f_double_gauss, x, y, guess, maxfev=10000)
assert_allclose(popt, good, rtol=1e-5)
示例14: _fitGivenSmoothness
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def _fitGivenSmoothness(y, t, ode, theta, s):
# p = ode.getNumParam()
# d = ode.getNumState()
splineList = interpolate(y, t, s=s)
interval = np.linspace(t[1], t[-1], 1000)
# xApprox, fxApprox, t = _getApprox(splineList, interval)
# g2 = partial(residual_sample, ode, fxApprox, xApprox, interval)
# g2J = partial(jac_sample, ode, fxApprox, xApprox, interval)
g2 = partial(residual_interpolant, ode, splineList, interval)
g2J = partial(jac_interpolant, ode, splineList, interval)
res = leastsq(func=g2, x0=theta, Dfun=g2J, full_output=True)
loss = 0
for spline in splineList:
loss += spline.get_residual()
# approximate the integral using fixed points
r = np.reshape(res[2]['fvec']**2, (len(interval), len(splineList)), 'F')
return (r.sum())*(interval[1] - interval[0]) + loss
示例15: _profileObtainAndVerify
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import leastsq [as 別名]
def _profileObtainAndVerify(f, df, x0, full_output=False):
'''
Find the solution of the profile likelihood and check
that the algorithm has converged.
'''
x, cov, infodict, mesg, ier = leastsq(func=f, x0=x0, Dfun=df,
maxfev=10000, full_output=True)
if ier not in (1, 2, 3, 4):
raise EstimateError("Failure in estimation of the profile likelihood: "
+ mesg)
if full_output:
output = dict()
output['cov'] = cov
output['infodict'] = infodict
output['mesg'] = mesg
output['ier'] = ier
return x, output
else:
return x