當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.golden方法代碼示例

本文整理匯總了Python中scipy.optimize.golden方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.golden方法的具體用法?Python optimize.golden怎麽用?Python optimize.golden使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.golden方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_golden

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def test_golden(self):
        x = optimize.golden(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, tol=0)
        assert_allclose(x, self.solution)

        maxiter_test_cases = [0, 1, 5]
        for maxiter in maxiter_test_cases:
            x0 = optimize.golden(self.fun, maxiter=0, full_output=True)
            x = optimize.golden(self.fun, maxiter=maxiter, full_output=True)
            nfev0, nfev = x0[2], x[2]
            assert_equal(nfev - nfev0, maxiter) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:24,代碼來源:test_optimize.py

示例2: P_dew_at_T

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def P_dew_at_T(self, T, zs, Psats=None):
        Psats = self._Psats(Psats, T)
        Pmax = self.P_bubble_at_T(T, zs, Psats)
        diff = 1E-7
        # EOSs do not solve at very low pressure
        if self.use_phis:
            Pmin = max(Pmax*diff, 1)
        else:
            Pmin = Pmax*diff
        P_dew = brenth(self._T_VF_err, Pmin, Pmax, args=(T, zs, Psats, Pmax, 1))
        self.__TVF_solve_cache = None
        return P_dew
#        try:
#            return brent(self._dew_P_UNIFAC_err, args=(T, zs, Psats, Pmax), brack=(Pmax*diff, Pmax*(1-diff), Pmax))
#        except:
#        return golden(self._dew_P_UNIFAC_err, args=(T, zs, Psats, Pmax), brack=(Pmax, Pmax*(1-diff)))
# 
開發者ID:CalebBell,項目名稱:thermo,代碼行數:19,代碼來源:property_package.py

示例3: fit_optimize_gcv

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def fit_optimize_gcv(self, y, x=None, weights=None, tol=1.0e-03,
                         brack=(-100,20)):
        """
        Fit smoothing spline trying to optimize GCV.

        Try to find a bracketing interval for scipy.optimize.golden
        based on bracket.

        It is probably best to use target_df instead, as it is
        sometimes difficult to find a bracketing interval.

        INPUTS:
           y       -- response variable
           x       -- if None, uses self.x
           df      -- target degrees of freedom
           weights -- optional array of weights
           tol     -- (relative) tolerance for convergence
           brack   -- an initial guess at the bracketing interval

        OUTPUTS: None
           The smoothing spline is determined by self.coef,
           subsequent calls of __call__ will be the smoothing spline.

        """

        def _gcv(pen, y, x):
            self.fit(y, x=x, pen=np.exp(pen))
            a = self.gcv()
            return a

        a = golden(_gcv, args=(y,x), brack=bracket, tol=tol) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:33,代碼來源:bspline.py

示例4: test_golden

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def test_golden(self):
        """ golden algorithm """
        x = optimize.golden(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:15,代碼來源:test_optimize.py

示例5: ee_radius

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def ee_radius(self, energy=FIRST_AIRY_ENCIRCLED):
        """Radius associated with a certain amount of enclosed energy."""
        k, v = list(self._ee.keys()), list(self._ee.values())
        if energy in v:
            idx = v.index(energy)
            return k[idx]

        def optfcn(x):
            return (self.encircled_energy(x) - energy) ** 2

        # golden seems to perform best in presence of shallow local minima as in
        # the encircled energy
        return optimize.golden(optfcn) 
開發者ID:brandondube,項目名稱:prysm,代碼行數:15,代碼來源:psf.py

示例6: _inverse_analytic_encircled_energy

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def _inverse_analytic_encircled_energy(fno, wavelength, energy=FIRST_AIRY_ENCIRCLED):
    def optfcn(x):
        return (_analytical_encircled_energy(fno, wavelength, x) - energy) ** 2

    return optimize.golden(optfcn) 
開發者ID:brandondube,項目名稱:prysm,代碼行數:7,代碼來源:psf.py

示例7: test_minimize_scalar

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def test_minimize_scalar(self):
        # combine all tests above for the minimize_scalar wrapper
        x = optimize.minimize_scalar(self.fun).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                    args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                    args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                    args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='golden',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
                                     method='Bounded').x
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
                                    method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
                                                      np.array([5])),
                                    args=(np.array([1.5]), ),
                                    method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(5, 1), method='bounded', args=(1.5, ))

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))

        x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:54,代碼來源:test_optimize.py

示例8: test_minimize_scalar

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import golden [as 別名]
def test_minimize_scalar(self):
        # combine all tests above for the minimize_scalar wrapper
        x = optimize.minimize_scalar(self.fun).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent')
        assert_(x.success)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                     options=dict(maxiter=3))
        assert_(not x.success)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                    args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                    args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                    args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='golden',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
                                     method='Bounded').x
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
                                    method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
                                                      np.array([5])),
                                    args=(np.array([1.5]), ),
                                    method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(5, 1), method='bounded', args=(1.5, ))

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))

        x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:61,代碼來源:test_optimize.py


注:本文中的scipy.optimize.golden方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。