本文整理匯總了Python中scipy.optimize.fsolve方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.fsolve方法的具體用法?Python optimize.fsolve怎麽用?Python optimize.fsolve使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.fsolve方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _fitstart
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def _fitstart(self, data):
g1 = _skew(data)
g2 = _kurtosis(data)
def func(x):
a, b = x
sk = 2*(b-a)*np.sqrt(a + b + 1) / (a + b + 2) / np.sqrt(a*b)
ku = a**3 - a**2*(2*b-1) + b**2*(b+1) - 2*a*b*(b+2)
ku /= a*b*(a+b+2)*(a+b+3)
ku *= 6
return [sk-g1, ku-g2]
a, b = optimize.fsolve(func, (1.0, 1.0))
return super(beta_gen, self)._fitstart(data, args=(a, b))
示例2: _xinf_ND
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def _xinf_ND(xdot,x0,args=(),xddot=None,xtol=1.49012e-8):
"""Private function for wrapping the fsolving for x_infinity
for a variable x in N dimensions"""
try:
result = fsolve(xdot,x0,args,fprime=xddot,xtol=xtol,full_output=1)
except (ValueError, TypeError, OverflowError):
xinf_val = NaN
except:
print "Error in fsolve:", sys.exc_info()[0], sys.exc_info()[1]
xinf_val = NaN
else:
if result[2] in (1,2,3): #,4,5):
# 4,5 means "not making good progress" (see fsolve docstring)
xinf_val = float(result[0])
else:
xinf_val = NaN
return xinf_val
示例3: computeShiftedGears
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def computeShiftedGears(m, alpha, t1, t2, x1, x2):
"""Summary
Args:
m (float): common module of both gears [length]
alpha (float): pressure-angle [rad]
t1 (int): number of teeth of gear1
t2 (int): number of teeth of gear2
x1 (float): relative profile-shift of gear1
x2 (float): relative profile-shift of gear2
Returns:
(float, float): distance between gears [length], pressure angle of the assembly [rad]
"""
def inv(x): return np.tan(x) - x
inv_alpha_w = inv(alpha) + 2 * np.tan(alpha) * (x1 + x2) / (t1 + t2)
def root_inv(x): return inv(x) - inv_alpha_w
alpha_w = opt.fsolve(root_inv, 0.)
dist = m * (t1 + t2) / 2 * np.cos(alpha) / np.cos(alpha_w)
return dist, alpha_w
示例4: calculate_psi_goal
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def calculate_psi_goal(psi_baseline, Au_baseline, Au_goal, deltaz,
c_baseline, c_goal):
"""Find the value for psi that has the same location w on the upper
surface of the goal as psi_baseline on the upper surface of the
baseline"""
def integrand(psi_baseline, Au, deltaz, c):
return c*np.sqrt(1 + dxi_u(psi_baseline, Au, deltaz/c)**2)
def equation(psi_goal, L_baseline, Au_goal, deltaz, c):
y, err = quad(integrand, 0, psi_goal, args=(Au_goal, deltaz, c))
return y - L_baseline
L_baseline, err = quad(integrand, 0, psi_baseline,
args=(Au_baseline, deltaz, c_baseline))
with warnings.catch_warnings():
warnings.simplefilter("ignore")
y = fsolve(equation, psi_baseline, args=(L_baseline, Au_goal, deltaz,
c_goal))
return y[0]
示例5: interp_isentrope
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def interp_isentrope(interp, pressures, entropy, T_guess):
def _deltaS(args, S, P):
T = args[0]
return interp(P, T)[0] - S
sol = [T_guess]
temperatures = np.empty_like(pressures)
for i, P in enumerate(pressures):
sol = fsolve(_deltaS, sol, args=(entropy, P))
temperatures[i] = sol[0]
return temperatures
# Define function to self consistently calculate depth and gravity profiles
# from pressure and density profiles.
示例6: equilibrium_pressure
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def equilibrium_pressure(minerals, stoichiometry, temperature, pressure_initial_guess=1.e5):
"""
Given a list of minerals, their reaction stoichiometries
and a temperature of interest, compute the
equilibrium pressure of the reaction.
Parameters
----------
minerals : list of minerals
List of minerals involved in the reaction.
stoichiometry : list of floats
Reaction stoichiometry for the minerals provided.
Reactants and products should have the opposite signs [mol]
temperature : float
Temperature of interest [K]
pressure_initial_guess : optional float
Initial pressure guess [Pa]
Returns
-------
pressure : float
The equilibrium pressure of the reaction [Pa]
"""
def eqm(P, T):
gibbs = 0.
for i, mineral in enumerate(minerals):
mineral.set_state(P[0], T)
gibbs = gibbs + mineral.gibbs * stoichiometry[i]
return gibbs
pressure = fsolve(eqm, [pressure_initial_guess], args=(temperature))[0]
return pressure
示例7: equilibrium_temperature
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def equilibrium_temperature(minerals, stoichiometry, pressure, temperature_initial_guess=1000.):
"""
Given a list of minerals, their reaction stoichiometries
and a pressure of interest, compute the
equilibrium temperature of the reaction.
Parameters
----------
minerals : list of minerals
List of minerals involved in the reaction.
stoichiometry : list of floats
Reaction stoichiometry for the minerals provided.
Reactants and products should have the opposite signs [mol]
pressure : float
Pressure of interest [Pa]
temperature_initial_guess : optional float
Initial temperature guess [K]
Returns
-------
temperature : float
The equilibrium temperature of the reaction [K]
"""
def eqm(T, P):
gibbs = 0.
for i, mineral in enumerate(minerals):
mineral.set_state(P, T[0])
gibbs = gibbs + mineral.gibbs * stoichiometry[i]
return gibbs
temperature = fsolve(eqm, [temperature_initial_guess], args=(pressure))[0]
return temperature
示例8: _digammainv
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def _digammainv(y):
# Inverse of the digamma function (real positive arguments only).
# This function is used in the `fit` method of `gamma_gen`.
# The function uses either optimize.fsolve or optimize.newton
# to solve `sc.digamma(x) - y = 0`. There is probably room for
# improvement, but currently it works over a wide range of y:
# >>> y = 64*np.random.randn(1000000)
# >>> y.min(), y.max()
# (-311.43592651416662, 351.77388222276869)
# x = [_digammainv(t) for t in y]
# np.abs(sc.digamma(x) - y).max()
# 1.1368683772161603e-13
#
_em = 0.5772156649015328606065120
func = lambda x: sc.digamma(x) - y
if y > -0.125:
x0 = np.exp(y) + 0.5
if y < 10:
# Some experimentation shows that newton reliably converges
# must faster than fsolve in this y range. For larger y,
# newton sometimes fails to converge.
value = optimize.newton(func, x0, tol=1e-10)
return value
elif y > -3:
x0 = np.exp(y/2.332) + 0.08661
else:
x0 = 1.0 / (-y - _em)
value, info, ier, mesg = optimize.fsolve(func, x0, xtol=1e-11,
full_output=True)
if ier != 1:
raise RuntimeError("_digammainv: fsolve failed, y = %r" % y)
return value[0]
## Gamma (Use MATLAB and MATHEMATICA (b=theta=scale, a=alpha=shape) definition)
## gamma(a, loc, scale) with a an integer is the Erlang distribution
## gamma(1, loc, scale) is the Exponential distribution
## gamma(df/2, 0, 2) is the chi2 distribution with df degrees of freedom.
示例9: create_test_fn
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def create_test_fn(gen, tmax, dist_pts):
"""Create integration test function using the supplied generator.
The test function will return a dictionary of the two closest
points (keys 1 and 2) mapping to their respective distances and
pointset index positions.
"""
gen.set(tdata=[0,tmax])
def Tn_integ(ic):
gen.set(ics=ic)
try:
test_traj = gen.compute('test')
except:
print "Problem integrating test trajectory at i.c. ", ic
raise
test_pts = test_traj.sample(coords=dist_pts.all_pts.coordnames)
# distance of endpoint to pointset
try:
d_info = dist_pts(test_pts[-1], use_norm=True, minmax=['min'])
except ValueError:
# This error happens when fsolve tries initial conditions that
# break the integrator
return (_num_inf,NaN)
pos = d_info['min'][1]['pos']
return (test_pts[-1]-dist_pts.all_pts[pos], pos)
return Tn_integ
示例10: create_test_fn_with_events
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def create_test_fn_with_events(gen, tmax, dist_pts, iso_ev, other_evnames, pars_to_vars):
"""Create integration test function using the supplied generator,
assuming it contains isochron-related events.
The test function will return a dictionary of the two closest
points (keys 1 and 2) mapping to their respective distances and
pointset index positions.
"""
def Tn_integ(ic):
gen.set(ics=ic, tdata=[0,tmax])
try:
test_traj = gen.compute('test')
except:
print "Problem integrating test trajectory at i.c. ", ic
raise
test_pts = test_traj.sample(coords=dist_pts.all_pts.coordnames)
# distance of endpoint to pointset
try:
d_info = dist_pts(test_pts[-1], use_norm=True, minmax=['min'])
except ValueError:
# This error happens when fsolve tries initial conditions that
# break the integrator
return (_num_inf,NaN)
# refine min position using isochron-related events
q=test_pts[-1]
perp_ev, t_ev = _find_min_pt(gen, q,
d_info['min'][1]['pos'], dist_pts.all_pts,
pars_to_vars, iso_ev, other_evnames)
ev_pt = perp_ev[0][q.coordnames]
# different return format to version w/o events
return (test_pts[-1]-ev_pt, t_ev, ev_pt)
return Tn_integ
示例11: _xinf_1D
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def _xinf_1D(xdot,x0,args=(),xddot=None,xtol=1.49012e-8):
"""Private function for wrapping the solving for x_infinity
for a variable x in 1 dimension"""
try:
if xddot is None:
xinf_val = float(fsolve(xdot,x0,args,xtol=xtol))
else:
xinf_val = float(newton_meth(xdot,x0,fprime=xddot,args=args))
except RuntimeError:
xinf_val = NaN
return xinf_val
示例12: test_pressure_network_no_gradient
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def test_pressure_network_no_gradient(self):
"""fsolve without gradient, equal pipes -> equal flows"""
k = np.ones(4) * 0.5
Qtot = 4
initial_guess = array([2., 0., 2., 0.])
final_flows, info, ier, mesg = optimize.fsolve(
pressure_network, initial_guess, args=(Qtot, k),
full_output=True)
assert_array_almost_equal(final_flows, np.ones(4))
assert_(ier == 1, mesg)
示例13: test_pressure_network_with_gradient
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def test_pressure_network_with_gradient(self):
"""fsolve with gradient, equal pipes -> equal flows"""
k = np.ones(4) * 0.5
Qtot = 4
initial_guess = array([2., 0., 2., 0.])
final_flows = optimize.fsolve(
pressure_network, initial_guess, args=(Qtot, k),
fprime=pressure_network_jacobian)
assert_array_almost_equal(final_flows, np.ones(4))
示例14: test_wrong_shape_func_callable
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def test_wrong_shape_func_callable(self):
"""The callable 'func' has no '__name__' attribute."""
func = ReturnShape(1)
# x0 is a list of two elements, but func will return an array with
# length 1, so this should result in a TypeError.
x0 = [1.5, 2.0]
assert_raises(TypeError, optimize.fsolve, func, x0)
示例15: test_wrong_shape_func_function
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fsolve [as 別名]
def test_wrong_shape_func_function(self):
# x0 is a list of two elements, but func will return an array with
# length 1, so this should result in a TypeError.
x0 = [1.5, 2.0]
assert_raises(TypeError, optimize.fsolve, dummy_func, x0, args=((1,),))