當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.fmin_tnc方法代碼示例

本文整理匯總了Python中scipy.optimize.fmin_tnc方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.fmin_tnc方法的具體用法?Python optimize.fmin_tnc怎麽用?Python optimize.fmin_tnc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.fmin_tnc方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: opt

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def opt(self, x_init, f_fp=None, f=None, fp=None):
        """
        Run the TNC optimizer

        """
        tnc_rcstrings = ['Local minimum', 'Converged', 'XConverged', 'Maximum number of f evaluations reached',
             'Line search failed', 'Function is constant']

        assert f_fp != None, "TNC requires f_fp"

        opt_dict = {}
        if self.xtol is not None:
            opt_dict['xtol'] = self.xtol
        if self.ftol is not None:
            opt_dict['ftol'] = self.ftol
        if self.gtol is not None:
            opt_dict['pgtol'] = self.gtol

        opt_result = optimize.fmin_tnc(f_fp, x_init, messages=self.messages,
                       maxfun=self.max_f_eval, **opt_dict)
        self.x_opt = opt_result[0]
        self.f_opt = f_fp(self.x_opt)[0]
        self.funct_eval = opt_result[1]
        self.status = tnc_rcstrings[opt_result[2]] 
開發者ID:sods,項目名稱:paramz,代碼行數:26,代碼來源:optimization.py

示例2: get_optimizer

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def get_optimizer(f_min):

    optimizers = {'fmin_tnc': opt_tnc,
          'simplex': opt_simplex,
          'lbfgsb': opt_lbfgsb,
          'org-bfgs': opt_bfgs,
          'scg': opt_SCG,
          'adadelta':Opt_Adadelta,
                  'rprop':RProp,
                  'adam':Adam}

    #if rasm_available:
    #    optimizers['rasmussen'] = opt_rasm

    for opt_name in sorted(optimizers.keys()):
        if opt_name.lower().find(f_min.lower()) != -1:
            return optimizers[opt_name]

    raise KeyError('No optimizer was found matching the name: %s' % f_min) 
開發者ID:sods,項目名稱:paramz,代碼行數:21,代碼來源:optimization.py

示例3: test_tnc1

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc1(self):
        fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [-1.5, None])
        xopt = [1, 1]

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, args=(100.0, ),
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_tnc.py

示例4: test_tnc1b

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc1b(self):
        x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None])
        xopt = [1, 1]

        x, nf, rc = optimize.fmin_tnc(self.f1, x, approx_grad=True,
                                      bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f1(x), self.f1(xopt), atol=1e-4,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:14,代碼來源:test_tnc.py

示例5: test_tnc1c

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc1c(self):
        x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None])
        xopt = [1, 1]

        x, nf, rc = optimize.fmin_tnc(self.f1, x, fprime=self.g1,
                                      bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:14,代碼來源:test_tnc.py

示例6: test_tnc2

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc2(self):
        fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [1.5, None])
        xopt = [-1.2210262419616387, 1.5]

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_tnc.py

示例7: test_tnc3

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc3(self):
        fg, x, bounds = self.fg3, [10, 1], ([-np.inf, None], [0.0, None])
        xopt = [0, 0]

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f3(x), self.f3(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_tnc.py

示例8: test_tnc5

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc5(self):
        fg, x, bounds = self.fg5, [0, 0], [(-1.5, 4),(-3, 3)]
        xopt = [-0.54719755119659763, -1.5471975511965976]

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f5(x), self.f5(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_tnc.py

示例9: test_tnc38

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc38(self):
        fg, x, bounds = self.fg38, np.array([-3, -1, -3, -1]), [(-10, 10)]*4
        xopt = [1]*4

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f38(x), self.f38(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_tnc.py

示例10: test_tnc45

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def test_tnc45(self):
        fg, x, bounds = self.fg45, [2] * 5, [(0, 1), (0, 2), (0, 3),
                                             (0, 4), (0, 5)]
        xopt = [1, 2, 3, 4, 5]

        x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
                                      messages=optimize.tnc.MSG_NONE,
                                      maxfun=200)

        assert_allclose(self.f45(x), self.f45(xopt), atol=1e-8,
                        err_msg="TNC failed with status: " +
                                optimize.tnc.RCSTRINGS[rc]) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:14,代碼來源:test_tnc.py

示例11: _optimize_loss

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_tnc [as 別名]
def _optimize_loss(probe_counts, loss_fn, bounds, x0,
                   initial_eps=10.0, step_size=0.001,
                   interp_fn_type='standard'):
    """Optimize loss function with barrier.

    This uses scipy's optimize.fmin_tnc to minimize the loss function
    in which the barrier is weighted by eps. It repeatedly minimizes
    the loss while decreasing eps so that, by the last iteration, the
    weight on the barrier is very small. On each iteration, it starts
    the initial guess/position at the solution to the previous iteration.

    Args:
        probe_counts: dict giving number of probes required for each
            dataset and choice of parameters
        loss_fn: the loss function provided by _make_loss_fn
        bounds: bounds on the parameter values provided by _make_param_bounds_*
        x0: the initial guess of parameter values (i.e., starting position)
        initial_eps: weight of the barrier on the first iteration
        step_size: epsilon value provided to optimize.fmin_tnc
        interp_fn_type: 'standard' (only perform interpolation on mismatches
            and cover_extension parameters) or 'nd' (use scipy's interpolate
            package to interpolate over n-dimensions)

    Returns:
        list of length (number of datasets)*(number of parameters) where
        x_i is the (i % N)'th parameter of the (i/N)'th dataset,
        for i=0,1,2,... where N=(number of datasets)
    """
    eps = initial_eps
    while eps >= 0.01:
        x0_probe_count = ic._make_total_probe_count_across_datasets_fn(
            probe_counts, interp_fn_type=interp_fn_type)(x0)
        logger.info(("Starting an iteration with eps=%f, with x0 yielding %f "
                "probes"), eps, x0_probe_count)

        sol, nfeval, rc = optimize.fmin_tnc(loss_fn, x0, bounds=bounds,
                                            args=(eps,),
                                            approx_grad=True,
                                            epsilon=step_size, disp=1, maxfun=2500)

        if rc in [0, 1, 2]:
            # rc == 0 indicates reaching the local minimum, and rc == 1 or
            # rc == 2 indicates the function value converged
            logger.info("  Iteration was successful")
        else:
            logger.info("  Iteration failed to converge!")

        x0 = sol
        eps = 0.1 * eps

    return sol 
開發者ID:broadinstitute,項目名稱:catch,代碼行數:53,代碼來源:param_search.py


注:本文中的scipy.optimize.fmin_tnc方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。