本文整理匯總了Python中scipy.optimize.fmin_cobyla方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.fmin_cobyla方法的具體用法?Python optimize.fmin_cobyla怎麽用?Python optimize.fmin_cobyla使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.fmin_cobyla方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def __call__(self, data, x0):
params = x0 * self.model.scales_for_optimization
params_dict = self.model.parameter_vector_to_parameters(params)
phi = self.model(self.acquisition_scheme,
quantity="stochastic cost function", **params_dict)
phi *= self.S0_tissue_responses
if self.model.N_models == 1:
vf_x0 = [1.]
else:
vf_x0 = x0[-self.model.N_models:]
vf = fmin_cobyla(self.cobyla_cost_function, x0=vf_x0,
cons=[cobyla_positivity_constraint],
args=(phi, data),
maxfun=2000)
return vf
示例2: __init__
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def __init__(self, rhobeg: float = 1.0, rhoend: float = 1e-4, maxfun: int = 1000,
disp: Optional[int] = None, catol: float = 2e-4) -> None:
"""Initializes the CobylaOptimizer.
This initializer takes the algorithmic parameters of COBYLA and stores them for later use
of ``fmin_cobyla`` when :meth:`solve` is invoked.
This optimizer can be applied to find a (local) optimum for problems consisting of only
continuous variables.
Args:
rhobeg: Reasonable initial changes to the variables.
rhoend: Final accuracy in the optimization (not precisely guaranteed).
This is a lower bound on the size of the trust region.
disp: Controls the frequency of output; 0 implies no output.
Feasible values are {0, 1, 2, 3}.
maxfun: Maximum number of function evaluations.
catol: Absolute tolerance for constraint violations.
"""
self._rhobeg = rhobeg
self._rhoend = rhoend
self._maxfun = maxfun
self._disp = disp
self._catol = catol
示例3: get_weights
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def get_weights():
# Read validation labels
_, labels, _, _, _ = utils.load_data()
skf = StratifiedKFold(labels, n_folds=5, random_state=23)
test_index = None
for _, test_idx in skf:
test_index = np.append(test_index, test_idx) if test_index is not None else test_idx
val_labels = labels[test_index]
# Read predictions on validation set
val_predictions = []
prediction_files = utils.get_prediction_files()
for preds_file in prediction_files:
vp = np.genfromtxt(os.path.join(consts.BLEND_PATH, preds_file), delimiter=',')
val_predictions.append(vp)
# Minimize blending function
p0 = [1.] * len(prediction_files)
p = fmin_cobyla(error, p0, args=(val_predictions, val_labels), cons=[constraint], rhoend=1e-5)
return p
示例4: __init__
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def __init__(self, regr='constant', corr='squared_exponential', beta0=None,
storage_mode='full', verbose=False, theta0=1e-1,
thetaL=None, thetaU=None, optimizer='fmin_cobyla',
random_start=1, normalize=True,
nugget=10. * MACHINE_EPSILON, random_state=None):
self.regr = regr
self.corr = corr
self.beta0 = beta0
self.storage_mode = storage_mode
self.verbose = verbose
self.theta0 = theta0
self.thetaL = thetaL
self.thetaU = thetaU
self.normalize = normalize
self.nugget = nugget
self.optimizer = optimizer
self.random_start = random_start
self.random_state = random_state
示例5: lse
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def lse(cA, mode='2D', cons=True):
l = len(cA)
r = [w.r for w in cA]
c = [w.c for w in cA]
S = sum(r)
W = [(S - w) / ((l - 1) * S) for w in r]
p0 = gx.point(0, 0, 0) # Initialized point
for i in range(l):
p0 = p0 + W[i] * c[i]
if mode == '2D' or mode == 'Earth1':
x0 = num.array([p0.x, p0.y])
elif mode == '3D':
x0 = num.array([p0.x, p0.y, p0.z])
else:
raise cornerCases('Mode not supported:' + mode)
if mode == 'Earth1':
fg1 = 1
else:
fg1 = 0
if cons:
print('GC-LSE geolocating...')
if not is_disjoint(cA, fg=fg1):
cL = []
for q in range(l):
def ff(x, q=q):
return r[q] - Norm(x, c[q].std(), mode=mode)
cL.append(ff)
res = fmin_cobyla(sum_error, x0, cL, args=(c, r, mode), consargs=(), rhoend=1e-5)
ans = res
else:
raise cornerCases('Disjoint')
else:
print('LSE Geolocating...')
res = minimize(sum_error, x0, args=(c, r, mode), method='BFGS')
ans = res.x
return gx.point(ans)
示例6: test_simple
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def test_simple(self):
""" fmin_cobyla """
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
rhoend=1e-5, iprint=0, maxfun=100)
assert_allclose(x, self.solution, atol=1e-4)
示例7: test_simple
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def test_simple(self):
# use disp=True as smoke test for gh-8118
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
rhoend=1e-5, maxfun=100, disp=True)
assert_allclose(x, self.solution, atol=1e-4)
示例8: test_vector_constraints
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_cobyla [as 別名]
def test_vector_constraints():
# test that fmin_cobyla and minimize can take a combination
# of constraints, some returning a number and others an array
def fun(x):
return (x[0] - 1)**2 + (x[1] - 2.5)**2
def fmin(x):
return fun(x) - 1
def cons1(x):
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
a[i, 2] for i in range(len(a))])
def cons2(x):
return x # identity, acts as bounds x > 0
x0 = np.array([2, 0])
cons_list = [fun, cons1, cons2]
xsol = [1.4, 1.7]
fsol = 0.8
# testing fmin_cobyla
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
assert_allclose(sol, xsol, atol=1e-4)
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
assert_allclose(fun(sol), 1, atol=1e-4)
# testing minimize
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.x, xsol, atol=1e-4)
assert_(sol.success, sol.message)
assert_allclose(sol.fun, fsol, atol=1e-4)
constraints = {'type': 'ineq', 'fun': fmin}
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.fun, 1, atol=1e-4)