當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.fmin_bfgs方法代碼示例

本文整理匯總了Python中scipy.optimize.fmin_bfgs方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.fmin_bfgs方法的具體用法?Python optimize.fmin_bfgs怎麽用?Python optimize.fmin_bfgs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.fmin_bfgs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_bfgs_infinite

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_bfgs_infinite(self, use_wrapper=False):
        """Test corner case where -Inf is the minimum.  See #1494."""
        func = lambda x: -np.e**-x
        fprime = lambda x: -func(x)
        x0 = [0]
        olderr = np.seterr(over='ignore')
        try:
            if use_wrapper:
                opts = {'disp': False}
                x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
                                      args=(), options=opts)['x']
            else:
                x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
            assert_(not np.isfinite(func(x)))
        finally:
            np.seterr(**olderr) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:18,代碼來源:test_optimize.py

示例2: run_bfgs

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def run_bfgs(self):
        """
        Run the optimization
        @return: Nothing
        """

        self.problem = SetPointsOptimizationProblem(self.circuit,
                                                    self.options,
                                                    self.max_iter,
                                                    callback=self.progress_signal.emit)

        xopt = fmin_bfgs(f=self.problem.eval, x0=self.problem.x0,
                         fprime=None, args=(), gtol=1e-05,  epsilon=1e-2,
                         maxiter=self.max_iter, full_output=0, disp=1, retall=0,
                         callback=None)

        self.solution = np.ones(self.problem.dim) + xopt

        # Extract function values from the controller
        self.optimization_values = np.array(self.problem.all_f)

        # send the finnish signal
        self.progress_signal.emit(0.0)
        self.progress_text.emit('Done!')
        self.done_signal.emit() 
開發者ID:SanPen,項目名稱:GridCal,代碼行數:27,代碼來源:voltage_set_points.py

示例3: opt

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def opt(self, x_init, f_fp=None, f=None, fp=None):
        """
        Run the optimizer

        """
        rcstrings = ['','Maximum number of iterations exceeded', 'Gradient and/or function calls not changing']

        opt_dict = {}
        if self.xtol is not None:
            print("WARNING: bfgs doesn't have an xtol arg, so I'm going to ignore it")
        if self.ftol is not None:
            print("WARNING: bfgs doesn't have an ftol arg, so I'm going to ignore it")
        if self.gtol is not None:
            opt_dict['gtol'] = self.gtol

        opt_result = optimize.fmin_bfgs(f, x_init, fp, disp=self.messages,
                                            maxiter=self.max_iters, full_output=True, **opt_dict)
        self.x_opt = opt_result[0]
        self.f_opt = f_fp(self.x_opt)[0]
        self.funct_eval = opt_result[4]
        self.status = rcstrings[opt_result[6]] 
開發者ID:sods,項目名稱:paramz,代碼行數:23,代碼來源:optimization.py

示例4: oneVsAll

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def oneVsAll(X,y,num_labels,Lambda):
    # 初始化變量
    m,n = X.shape
    all_theta = np.zeros((n+1,num_labels))  # 每一列對應相應分類的theta,共10列
    X = np.hstack((np.ones((m,1)),X))       # X前補上一列1的偏置bias
    class_y = np.zeros((m,num_labels))      # 數據的y對應0-9,需要映射為0/1的關係
    initial_theta = np.zeros((n+1,1))       # 初始化一個分類的theta
    
    # 映射y
    for i in range(num_labels):
        class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以賦值
    
    #np.savetxt("class_y.csv", class_y[0:600,:], delimiter=',')    
    
    '''遍曆每個分類,計算對應的theta值'''
    for i in range(num_labels):
        #optimize.fmin_cg
        result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,class_y[:,i],Lambda)) # 調用梯度下降的優化方法
        all_theta[:,i] = result.reshape(1,-1)   # 放入all_theta中
        
    all_theta = np.transpose(all_theta) 
    return all_theta

# 代價函數 
開發者ID:lawlite19,項目名稱:MachineLearning_Python,代碼行數:26,代碼來源:LogisticRegression_OneVsAll.py

示例5: test_model_hawkes_varying_baseline_least_sq_grad

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_model_hawkes_varying_baseline_least_sq_grad(self):
        """...Test that ModelHawkesExpKernLeastSq gradient is consistent
        with loss
        """
        for model in [self.model, self.model_list]:
            model.period_length = 1.
            model.n_baselines = 3
            coeffs = np.random.rand(model.n_coeffs)

            self.assertLess(check_grad(model.loss, model.grad, coeffs), 1e-5)

            coeffs_min = fmin_bfgs(model.loss, coeffs, fprime=model.grad,
                                   disp=False)

            self.assertAlmostEqual(
                norm(model.grad(coeffs_min)), .0, delta=1e-4) 
開發者ID:X-DataInitiative,項目名稱:tick,代碼行數:18,代碼來源:model_hawkes_sumexpkern_leastsq_test.py

示例6: test_bfgs_infinite

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_bfgs_infinite(self):
        # Test corner case where -Inf is the minimum.  See gh-2019.
        func = lambda x: -np.e**-x
        fprime = lambda x: -func(x)
        x0 = [0]
        olderr = np.seterr(over='ignore')
        try:
            if self.use_wrapper:
                opts = {'disp': self.disp}
                x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
                                      args=(), options=opts)['x']
            else:
                x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp)
            assert_(not np.isfinite(func(x)))
        finally:
            np.seterr(**olderr) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:18,代碼來源:test_optimize.py

示例7: bfgs_min_pos

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def bfgs_min_pos(find_min_pos, y_len, linear_interp):
    """
    通過scipy.interpolate.interp1d插值形成的模型,通過sco.fmin_bfgs計算min
    :param find_min_pos: 尋找min的點位值
    :param y_len: 原始序列長度,int
    :param linear_interp: scipy.interpolate.interp1d插值形成的模型
    :return: sco.fmin_bfgs成功找到的值,所有失敗的或者異常都返回-1
    """
    try:
        local_min_pos = sco.fmin_bfgs(linear_interp, find_min_pos, disp=False)[0]
    except:
        # 所有失敗的或者異常都返回-1
        local_min_pos = -1
    if local_min_pos < 0 or local_min_pos > y_len:
        # 所有失敗的或者異常都返回-1
        local_min_pos = -1
    return local_min_pos 
開發者ID:bbfamily,項目名稱:abu,代碼行數:19,代碼來源:ABuTLExecute.py

示例8: _fit_bfgs

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def _fit_bfgs(f, score, start_params, fargs, kwargs, disp=True,
                    maxiter=100, callback=None, retall=False,
                    full_output=True, hess=None):
    gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05)
    norm = kwargs.setdefault('norm', np.Inf)
    epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08)
    retvals = optimize.fmin_bfgs(f, start_params, score, args=fargs,
                                 gtol=gtol, norm=norm, epsilon=epsilon,
                                 maxiter=maxiter, full_output=full_output,
                                 disp=disp, retall=retall, callback=callback)
    if full_output:
        if not retall:
            xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag = retvals
        else:
            (xopt, fopt, gopt, Hinv, fcalls,
             gcalls, warnflag, allvecs) = retvals
        converged = not warnflag
        retvals = {'fopt': fopt, 'gopt': gopt, 'Hinv': Hinv,
                'fcalls': fcalls, 'gcalls': gcalls, 'warnflag':
                warnflag, 'converged': converged}
        if retall:
            retvals.update({'allvecs': allvecs})
    else:
        xopt = retvals
        retvals = None

    return xopt, retvals 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:29,代碼來源:optimizer.py

示例9: fitgmm_cu

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def fitgmm_cu(self, start, optim_method='bfgs', optim_args=None):
        '''estimate parameters using continuously updating GMM

        Parameters
        ----------
        start : array_like
            starting values for minimization

        Returns
        -------
        paramest : array
            estimated parameters

        Notes
        -----
        todo: add fixed parameter option, not here ???

        uses scipy.optimize.fmin

        '''
##        if not fixed is None:  #fixed not defined in this version
##            raise NotImplementedError

        if optim_args is None:
            optim_args = {}

        if optim_method == 'nm':
            optimizer = optimize.fmin
        elif optim_method == 'bfgs':
            optimizer = optimize.fmin_bfgs
            optim_args['fprime'] = self.score_cu
        elif optim_method == 'ncg':
            optimizer = optimize.fmin_ncg
        else:
            raise ValueError('optimizer method not available')

        #TODO: add other optimization options and results
        return optimizer(self.gmmobjective_cu, start, args=(), **optim_args) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:40,代碼來源:gmm.py

示例10: test_bfgs

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_bfgs(self, use_wrapper=False):
        """ Broyden-Fletcher-Goldfarb-Shanno optimization routine """
        if use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': False,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams,
                                    jac=self.grad, method='BFGS', args=(),
                                    options=opts)

            params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = \
                    res['x'], res['fun'], res['jac'], res['hess_inv'], \
                    res['nfev'], res['njev'], res['status']
        else:
            retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad,
                                        args=(), maxiter=self.maxiter,
                                        full_output=True, disp=False, retall=False)

            (params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # Scipy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 10, self.funccalls)
        assert_(self.gradcalls == 8, self.gradcalls)

        # Ensure that the function behaves the same; this is from Scipy 0.7.0
        assert_allclose(self.trace[6:8],
                        [[0, -5.25060743e-01, 4.87748473e-01],
                         [0, -5.24885582e-01, 4.87530347e-01]],
                        atol=1e-14, rtol=1e-7) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:34,代碼來源:test_optimize.py

示例11: test_bfgs_nan

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_bfgs_nan(self):
        """Test corner case where nan is fed to optimizer.  See #1542."""
        func = lambda x: x
        fprime = lambda x: np.ones_like(x)
        x0 = [np.nan]
        olderr = np.seterr(over='ignore')
        try:
            x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
            assert_(np.isnan(func(x)))
        finally:
            np.seterr(**olderr) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_optimize.py

示例12: test_bfgs_numerical_jacobian

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_bfgs_numerical_jacobian(self):
        """ BFGS with numerical jacobian and a vector epsilon parameter """
        # define the epsilon parameter using a random vector
        epsilon = np.sqrt(np.finfo(float).eps) * np.random.rand(len(self.solution))

        params = optimize.fmin_bfgs(self.func, self.startparams,
                                    epsilon=epsilon, args=(),
                                    maxiter=self.maxiter, disp=False)

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:13,代碼來源:test_optimize.py

示例13: LogisticRegression

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def LogisticRegression():
    data = loadtxtAndcsv_data("data2.txt", ",", np.float64) 
    X = data[:,0:-1]
    y = data[:,-1]
    
    plot_data(X,y)  # 作圖
    
    X = mapFeature(X[:,0],X[:,1])           #映射為多項式
    initial_theta = np.zeros((X.shape[1],1))#初始化theta
    initial_lambda = 0.1                    #初始化正則化係數,一般取0.01,0.1,1.....
    
    J = costFunction(initial_theta,X,y,initial_lambda)  #計算一下給定初始化的theta和lambda求出的代價J
    
    print(J)  #輸出一下計算的值,應該為0.693147
    #result = optimize.fmin(costFunction, initial_theta, args=(X,y,initial_lambda))    #直接使用最小化的方法,效果不好
    '''調用scipy中的優化算法fmin_bfgs(擬牛頓法Broyden-Fletcher-Goldfarb-Shanno)
    - costFunction是自己實現的一個求代價的函數,
    - initial_theta表示初始化的值,
    - fprime指定costFunction的梯度
    - args是其餘測參數,以元組的形式傳入,最後會將最小化costFunction的theta返回 
    '''
    result = optimize.fmin_bfgs(costFunction, initial_theta, fprime=gradient, args=(X,y,initial_lambda))    
    p = predict(X, result)   #預測
    print(u'在訓練集上的準確度為%f%%'%np.mean(np.float64(p==y)*100))   # 與真實值比較,p==y返回True,轉化為float   
    
    X = data[:,0:-1]
    y = data[:,-1]    
    plotDecisionBoundary(result,X,y)    #畫決策邊界  
    
    

# 加載txt和csv文件 
開發者ID:lawlite19,項目名稱:MachineLearning_Python,代碼行數:34,代碼來源:LogisticRegression.py

示例14: test_spatial_median_2d

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def test_spatial_median_2d():
    X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2)
    _, median = _spatial_median(X, max_iter=100, tol=1.e-6)

    def cost_func(y):
        dists = np.array([norm(x - y) for x in X])
        return np.sum(dists)

    # Check if median is solution of the Fermat-Weber location problem
    fermat_weber = fmin_bfgs(cost_func, median, disp=False)
    assert_array_almost_equal(median, fermat_weber)
    # Check when maximum iteration is exceeded a warning is emitted
    assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_theil_sen.py

示例15: _test_grad

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import fmin_bfgs [as 別名]
def _test_grad(self, model, coeffs, delta_check_grad=None,
                   delta_model_grad=None):
        """Test that gradient is consistent with loss and that minimum is
        achievable with a small gradient
        """
        if coeffs.dtype is np.dtype("float32"):
            check_grad_epsilon = 3e-3
        else:
            check_grad_epsilon = 1e-7

        if delta_check_grad is None:
            delta_check_grad = self.delta_check_grad

        if delta_model_grad is None:
            delta_model_grad = self.delta_model_grad

        with warnings.catch_warnings(record=True):
            grad_check = check_grad(model.loss, model.grad, coeffs,
                                    epsilon=check_grad_epsilon)

        self.assertAlmostEqual(grad_check, 0., delta=delta_check_grad)
        # Check that minimum is achievable with a small gradient

        with warnings.catch_warnings(record=True):
            coeffs_min = fmin_bfgs(model.loss, coeffs, fprime=model.grad,
                                   disp=False)
            coeffs_min = coeffs_min.astype(self.dtype)

        self.assertAlmostEqual(
            norm(model.grad(coeffs_min)), .0, delta=delta_model_grad) 
開發者ID:X-DataInitiative,項目名稱:tick,代碼行數:32,代碼來源:generalized_linear_model.py


注:本文中的scipy.optimize.fmin_bfgs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。