當前位置: 首頁>>代碼示例>>Python>>正文


Python optimize.curve_fit方法代碼示例

本文整理匯總了Python中scipy.optimize.curve_fit方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.curve_fit方法的具體用法?Python optimize.curve_fit怎麽用?Python optimize.curve_fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在scipy.optimize的用法示例。


在下文中一共展示了optimize.curve_fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_dirichlet

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def make_dirichlet(block_len, carrier_len, width=6):
    def _fit_model(xdata, amplitude, time_offset):
        xdata = np.array(xdata, dtype=np.float64)
        dirichlet = _dirichlet_kernel(xdata-time_offset,
                                      block_len,
                                      carrier_len)
        return amplitude * np.abs(dirichlet)

    def _interpolator(fft_mag, peak):
        xdata = np.array(np.arange(-(width//2), width//2+1))
        ydata = fft_mag[peak + xdata]
        initial_guess = (fft_mag[peak], 0)
        popt, _ = curve_fit(_fit_model, xdata, ydata, p0=initial_guess)
        _, fit_offset = popt
        return fit_offset

    return _interpolator 
開發者ID:swkrueger,項目名稱:Thrifty,代碼行數:19,代碼來源:carrier_interpolators.py

示例2: find_ab_params

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def find_ab_params(spread, min_dist):
    """Fit a, b params for the differentiable curve used in lower
    dimensional fuzzy simplicial complex construction. We want the
    smooth curve (from a pre-defined family with simple gradient) that
    best matches an offset exponential decay.
    """

    def curve(x, a, b):
        return 1.0 / (1.0 + a * x ** (2 * b))

    xv = np.linspace(0, spread * 3, 300)
    yv = np.zeros(xv.shape)
    yv[xv < min_dist] = 1.0
    yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread)
    params, covar = curve_fit(curve, xv, yv)
    return params[0], params[1] 
開發者ID:lmcinnes,項目名稱:umap,代碼行數:18,代碼來源:umap_.py

示例3: get_at_timestamps

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def get_at_timestamps(sentence):
    # audio_stamps = np.arange(sentence.shape[1]) * 30

    audio_stamps = []
    audio_len, char_len = sentence.shape
    x = np.arange(audio_len)
    for step in range(char_len):
        slice = sentence[:, step]

        try:
            mean = np.argmax(slice)
            # sigma = np.std(slice)
            sigma = 0.5
            p0 = [1, mean, sigma]
            popt, pcov = curve_fit(gaussian, x, slice, p0=p0, maxfev=200000)
            x2 = np.linspace(0, audio_len, audio_len * 10)
            new_curve = gaussian(x2, *popt)
            argmax_id = np.argmax(new_curve)
        except:
            argmax_id = np.argmax(slice) * 10
        audio_stamps.append(argmax_id / 10)

    audio_stamps = np.array(audio_stamps) * 30

    return audio_stamps 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:27,代碼來源:modality_lags.py

示例4: fit_gaussian

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def fit_gaussian(x):
    """
    Fit a Gaussian function to x and return its parameters

    Parameters
    ----------
    x : 1D np.array
        1D profile of your data

    Returns
    -------
    out : tuple of float
        (a, mu, sigma, c)
    """
    p, q = curve_fit(gaussian, list(range(x.size)), x, p0=guss_gaussian(x))
    return p 
開發者ID:PyAbel,項目名稱:PyAbel,代碼行數:18,代碼來源:math.py

示例5: curvefit

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def curvefit(self,correlation,time, begin,end):
        #Fit the exponential functions to the correlation function to estimate the ion pair lifetime 
        funlist = [self.exponential1,self.exponential2,self.exponential3,self.exponential4,self.exponential5]
        IPL = []
        r2 = []
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            for fun in funlist:
                popt, pcov = curve_fit(fun, time[begin:end], correlation[begin:end],maxfev=100000000)
                fit = []
                for i in time:
                    fit.append(fun(i,*popt))
                yave = np.average(correlation[begin:end])
                SStot = 0
                SSres = 0
                for l in range(begin,end):
                    SStot += (correlation[l]-yave)**2
                    SSres += (correlation[l]-fit[l])**2
                r2.append(1-SSres/SStot)
                IPL.append(0)
                for i in range(0,int(len(popt)/2)):
                    IPL[-1] += popt[i]*popt[i+int(len(popt)/2)]
        return (IPL,r2) 
開發者ID:MaginnGroup,項目名稱:PyLAT,代碼行數:25,代碼來源:ionpair.py

示例6: fit

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def fit(t_data, y_data):
    """ Fit a complex exponential to y_data

    :param t_data: array of values for t-axis (x-axis)
    :param y_data: array of values for y-axis. of the same shape as t-data
    :returns: fitted parameters: (exp_coef, cos_coef)
    :rtype: tuple
    """
    # very fast way to check for nan
    if not np.isnan(np.sum(y_data)):
        # p_0 = estimate_params(t_data, y_data)
        p_0 = None
        opt_params = curve_fit(curve_fn, t_data, y_data, p0=p_0, maxfev=1000)[0]
        return opt_params
    else:
        return 1E3, 0 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:18,代碼來源:objective.py

示例7: optimize_bowers_trace

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def optimize_bowers_trace(depth_tr, vel_tr, obp_tr, hydro_tr,
                          depth_upper, depth_lower):

    es_data = np.array(obp_tr) - np.array(hydro_tr)
    depth = np.array(depth_tr)

    mask = depth < depth_lower
    mask *= depth > depth_upper

    vel_interval = np.array(vel_tr)[mask]
    es_interval = es_data[mask]

    vel_to_fit = pick_sparse(vel_interval, 3)
    es_to_fit = pick_sparse(es_interval, 3)

    popt, _ = curve_fit(virgin_curve, es_to_fit, vel_to_fit)
    a, b = popt

    return a, b 
開發者ID:whimian,項目名稱:pyGeoPressure,代碼行數:21,代碼來源:optimizer.py

示例8: optimize_nct_trace

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def optimize_nct_trace(depth, vel, fit_start, fit_stop, pick=True):

    mask = depth > fit_start
    mask *= depth < fit_stop
    mask *= np.isfinite(vel)

    depth_interval = np.array(depth)[mask]
    vel_interval = np.array(vel)[mask]

    if pick is True:
        depth_to_fit = pick_sparse(depth_interval, 3)
        vel_to_fit = pick_sparse(vel_interval, 3)
    else:
        depth_to_fit = depth_interval
        vel_to_fit = vel_interval

    dt = vel_to_fit**(-1)
    log_dt = np.log(dt)

    popt, _ = curve_fit(normal_dt, depth_to_fit, log_dt)
    a, b = popt

    return a, b 
開發者ID:whimian,項目名稱:pyGeoPressure,代碼行數:25,代碼來源:optimizer.py

示例9: get_fitting_parameters

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def get_fitting_parameters(self):

        if self._fit_params is None:
            if self.guess_pos is None or self.guess_height is None:
                fit_params, fit_covariances = curve_fit(self._function,
                                                        self.test_frequencies_range,
                                                        self.power_spectrum)
            else:
                fit_params, fit_covariances = curve_fit(self._function,
                                                        self.test_frequencies_range,
                                                        self.power_spectrum,
                                                        p0=[self.guess_pos, 0.1, self.guess_height, 0.0])
            self._fit_covariances = fit_covariances
            self._fit_params = fit_params

        return self._fit_params, self._fit_covariances 
開發者ID:abelcarreras,項目名稱:DynaPhoPy,代碼行數:18,代碼來源:fitting_functions.py

示例10: leastsq_curve_fit

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def leastsq_curve_fit(x, y, f, p0):
        """
        Args:
            x (1d array): domain values for fitting
            y (1d array): range values
            f (function): function that maps x to y; must have x as first param
            p0 (tuple): default parameter values for function f

        returns:
            popt (tuple): best fit parameters for function f
        """
        try:
            popt, pcov = optimize.curve_fit(f, x, y, p0)
            return popt
        except RuntimeError as e:
            return None 
開發者ID:energyPATHWAYS,項目名稱:EnergyPATHWAYS,代碼行數:18,代碼來源:time_series.py

示例11: _estimate_hack_coeff

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def _estimate_hack_coeff(A, L):
    """Estimate Hack parameters.

    Given A and L, estimate C and h Where

    L = C * A**h

    Examples
    --------
    >>> import numpy as np
    >>> np.random.seed(42)
    >>> from landlab.components.hack_calculator.hack_calculator import (
    ...     _estimate_hack_coeff, _hacks_law)
    >>> C = 0.5
    >>> h = 0.75
    >>> A = np.arange(1, 1000)
    >>> L = _hacks_law(A, C, h) + np.random.randn(A.size)
    >>> C_hat, h_hat = _estimate_hack_coeff(A, L)
    >>> np.round(C_hat, decimals=3)
    0.497
    >>> np.round(h_hat, decimals=3)
    0.751
    """
    popt, pcov = curve_fit(_hacks_law, A, L, (0.5, 0.7))
    return popt 
開發者ID:landlab,項目名稱:landlab,代碼行數:27,代碼來源:hack_calculator.py

示例12: _components

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def _components(self, magnitude, time, error, lscargle_kwds):
        time = time - np.min(time)
        A, PH = [], []
        for i in range(3):
            frequency, power = lscargle(
                time=time, magnitude=magnitude, error=error, **lscargle_kwds
            )

            fmax = np.argmax(power)
            fundamental_Freq = frequency[fmax]
            Atemp, PHtemp = [], []
            omagnitude = magnitude

            for j in range(4):
                function_to_fit = self._yfunc_maker((j + 1) * fundamental_Freq)
                popt0, popt1, popt2 = curve_fit(
                    function_to_fit, time, omagnitude
                )[0][:3]

                Atemp.append(np.sqrt(popt0 ** 2 + popt1 ** 2))
                PHtemp.append(np.arctan(popt1 / popt0))

                model = self._model(
                    time, popt0, popt1, popt2, (j + 1) * fundamental_Freq
                )
                magnitude = np.array(magnitude) - model

            A.append(Atemp)
            PH.append(PHtemp)

        PH = np.asarray(PH)
        scaledPH = PH - PH[:, 0].reshape((len(PH), 1))

        return A, scaledPH 
開發者ID:quatrope,項目名稱:feets,代碼行數:36,代碼來源:ext_fourier_components.py

示例13: _components

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def _components(self, magnitude, time, ofac):
        time = time - np.min(time)
        A, PH = [], []
        for i in range(3):

            wk1, wk2, nout, jmax, prob = lomb.fasper(
                time, magnitude, ofac, 100.)

            fundamental_Freq = wk1[jmax]
            Atemp, PHtemp = [], []
            omagnitude = magnitude

            for j in range(4):
                function_to_fit = self._yfunc_maker((j + 1) * fundamental_Freq)
                popt0, popt1, popt2 = curve_fit(
                    function_to_fit, time, omagnitude)[0][:3]

                Atemp.append(np.sqrt(popt0 ** 2 + popt1 ** 2))
                PHtemp.append(np.arctan(popt1 / popt0))

                model = self._model(
                    time, popt0, popt1, popt2,
                    (j+1) * fundamental_Freq)
                magnitude = np.array(magnitude) - model

            A.append(Atemp)
            PH.append(PHtemp)

        PH = np.asarray(PH)
        scaledPH = PH - PH[:, 0].reshape((len(PH), 1))

        return A, scaledPH 
開發者ID:quatrope,項目名稱:feets,代碼行數:34,代碼來源:ext_fourier_components_orig.py

示例14: fit_plot_central_charge

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def fit_plot_central_charge(s_list, xi_list, filename):
    """Plot routine in order to determine the cental charge."""
    import matplotlib.pyplot as plt
    from scipy.optimize import curve_fit

    def fitFunc(Xi, c, a):
        return (c / 6) * np.log(Xi) + a

    Xi = np.array(xi_list)
    S = np.array(s_list)
    LXi = np.log(Xi)  # Logarithm of the correlation length xi

    fitParams, fitCovariances = curve_fit(fitFunc, Xi, S)

    # Plot fitting parameter and covariances
    print('c =', fitParams[0], 'a =', fitParams[1])
    print('Covariance Matrix', fitCovariances)

    # plot the data as blue circles
    plt.errorbar(LXi,
                 S,
                 fmt='o',
                 c='blue',
                 ms=5.5,
                 markerfacecolor='white',
                 markeredgecolor='blue',
                 markeredgewidth=1.4)
    # plot the fitted line
    plt.plot(LXi,
             fitFunc(Xi, fitParams[0], fitParams[1]),
             linewidth=1.5,
             c='black',
             label='fit c={c:.2f}'.format(c=fitParams[0]))

    plt.xlabel(r'$\log{\,}\xi_{\chi}$', fontsize=16)
    plt.ylabel(r'$S$', fontsize=16)
    plt.legend(loc='lower right', borderaxespad=0., fancybox=True, shadow=True, fontsize=16)
    plt.savefig(filename) 
開發者ID:tenpy,項目名稱:tenpy,代碼行數:40,代碼來源:central_charge_ising.py

示例15: apply

# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import curve_fit [as 別名]
def apply(self, p_array, dz):
        _logger.debug(" BeamAnalysis applied, dz =" + str(dz))

        def test_func(x, a, phi, delta, g):
            return a * np.sin(2 * np.pi / self.lambda_mod * x + phi) + delta + g * x

        bunch_c = np.mean(p_array.tau())

        slice_min = bunch_c - self.lambda_mod * self.nlambdas
        slice_max = bunch_c + self.lambda_mod * self.nlambdas

        indx = np.where(np.logical_and(np.greater_equal(p_array.tau(), slice_min),
                                       np.less(p_array.tau(), slice_max)))[0]
        p = p_array.p()[indx]
        tau = p_array.tau()[indx]

        sigma_x, sigma_y = np.std(p_array.x()[indx]), np.std(p_array.y()[indx])
        # sigma_px, sigma_py = np.std(p_array.px()[indx]), np.std(p_array.py()[indx])
        params, params_covariance = optimize.curve_fit(test_func, tau, p, p0=[0.001, 0, 0, 0])

        b = slice_bunching(tau, charge=np.sum(p_array.q_array[indx]), lambda_mod=self.lambda_mod,
                           smooth_sigma=self.lambda_mod / 5)

        self.p.append(params[0])
        self.phi.append(params[1])
        self.s.append(np.copy(p_array.s))
        self.energy.append(np.copy(p_array.E))
        self.bunching.append(b)
        self.sigma_x.append(sigma_x)
        self.sigma_y.append(sigma_y)
        # print("center = ", (slice_max + slice_min)/2.)
        # self.sigma_px.append(sigma_px)
        # self.sigma_py.append(sigma_py) 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:35,代碼來源:physics_proc.py


注:本文中的scipy.optimize.curve_fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。