本文整理匯總了Python中scipy.optimize.brentq方法的典型用法代碼示例。如果您正苦於以下問題:Python optimize.brentq方法的具體用法?Python optimize.brentq怎麽用?Python optimize.brentq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類scipy.optimize
的用法示例。
在下文中一共展示了optimize.brentq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: p_o2_calc
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def p_o2_calc(delta, dh_1, dh_2, temp, act):
"""
Calculates the oxygen partial pressure p_O2 of a perovskite solid solution with two redox-active species
:param delta: non-stoichiometry delta
:param dh_1: reaction enthalpy of perovskite 1
:param dh_2: reaction enthalpy of perovskite 2
:param temp: temperature in K
:return: p_O2 as absolute value
"""
def fun_p_o2(p_o2):
return delta_mix(temp, p_o2, dh_1, dh_2, act) - delta
try:
sol_p_o2_l = brentq(fun_p_o2, a=-100, b=100)
except ValueError:
sol_p_o2_l = brentq(fun_p_o2, a=-300, b=300)
return pd.np.exp(sol_p_o2_l)
示例2: validate_on_lfw
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def validate_on_lfw(model, lfw_160_path):
# Read the file containing the pairs used for testing
pairs = lfw.read_pairs('validation-LFW-pairs.txt')
# Get the paths for the corresponding images
paths, actual_issame = lfw.get_paths(lfw_160_path, pairs)
num_pairs = len(actual_issame)
all_embeddings = np.zeros((num_pairs * 2, 512), dtype='float32')
for k in tqdm.trange(num_pairs):
img1 = cv2.imread(paths[k * 2], cv2.IMREAD_COLOR)[:, :, ::-1]
img2 = cv2.imread(paths[k * 2 + 1], cv2.IMREAD_COLOR)[:, :, ::-1]
batch = np.stack([img1, img2], axis=0)
embeddings = model.eval_embeddings(batch)
all_embeddings[k * 2: k * 2 + 2, :] = embeddings
tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
all_embeddings, actual_issame, distance_metric=1, subtract_mean=True)
print('Accuracy: %2.5f+-%2.5f' % (np.mean(accuracy), np.std(accuracy)))
print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
auc = metrics.auc(fpr, tpr)
print('Area Under Curve (AUC): %1.3f' % auc)
eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
print('Equal Error Rate (EER): %1.3f' % eer)
示例3: _ppf_single
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def _ppf_single(self, q, *args):
left = right = None
if self.a > -np.inf:
left = self.a
if self.b < np.inf:
right = self.b
factor = 10.
if not left: # i.e. self.a = -inf
left = -1.*factor
while self._ppf_to_solve(left, q, *args) > 0.:
right = left
left *= factor
# left is now such that cdf(left) < q
if not right: # i.e. self.b = inf
right = factor
while self._ppf_to_solve(right, q, *args) < 0.:
left = right
right *= factor
# right is now such that cdf(right) > q
return optimize.brentq(self._ppf_to_solve,
left, right, args=(q,)+args, xtol=self.xtol)
# moment from definition
示例4: _solve_effect_size
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def _solve_effect_size(self, effect_size=None, nobs=None, alpha=None,
power=None, k_groups=2):
'''experimental, test failure in solve_power for effect_size
'''
def func(x):
effect_size = x
return self._power_identity(effect_size=effect_size,
nobs=nobs,
alpha=alpha,
k_groups=k_groups,
power=power)
val, r = optimize.brentq(func, 1e-8, 1-1e-8, full_output=True)
if not r.converged:
print(r)
return val
示例5: solve_equilibrium
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def solve_equilibrium(c0, stoich, K, activity_product=None):
"""
Solve equilibrium concentrations by using scipy.optimize.brentq
Parameters
----------
c0: array_like
Initial guess of equilibrium concentrations
stoich: tuple
per specie stoichiometry coefficient (law of mass action)
K: float
equilibrium constant
activity_product: callable
see ``equilibrium_residual``
delta_frac: float
to avoid division by zero the span of searched values for
the reactions coordinate (rc) is shrunk by 2*delta_frac*span(rc)
"""
stoich = np.array(stoich)
c0 = np.array(c0)
rc = _solve_equilibrium_coord(c0, stoich, K, activity_product)
return c0 + rc*stoich
示例6: rootfind
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def rootfind(a, b, args, funciso_here):
solutioniso = 0
try:
solutioniso = brentq(
funciso_here, 0.01, 0.49, args=args
) # works for most cases
except ValueError: # starting values a,b for cases where 0.01/0.49 are not sign changing
try:
solutioniso = brentq(funciso_here, a, b, args=args)
except ValueError:
solutioniso = None # if no solution can be found
return solutioniso
示例7: compute_eer
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def compute_eer(y_true, y_pred):
fpr, tpr, _ = roc_curve(y_true, y_pred, pos_label=1)
eer = brentq(lambda x : 1. - x - interp1d(fpr, tpr)(x), 0., 1)
return 100. * eer
示例8: roc
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def roc(labels, scores, saveto=None):
"""Compute ROC curve and ROC area for each class"""
fpr = dict()
tpr = dict()
roc_auc = dict()
labels = labels.cpu()
scores = scores.cpu()
# True/False Positive Rates.
fpr, tpr, _ = roc_curve(labels, scores)
roc_auc = auc(fpr, tpr)
# Equal Error Rate
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
if saveto:
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='(AUC = %0.2f, EER = %0.2f)' % (roc_auc, eer))
plt.plot([eer], [1-eer], marker='o', markersize=5, color="navy")
plt.plot([0, 1], [1, 0], color='navy', lw=1, linestyle=':')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig(os.path.join(saveto, "ROC.pdf"))
plt.close()
return roc_auc
示例9: Jn_zeros
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def Jn_zeros(n, k):
zerosj = np.zeros((n, k), dtype='float32')
zerosj[0] = np.arange(1, k + 1) * np.pi
points = np.arange(1, k + n) * np.pi
racines = np.zeros(k + n - 1, dtype='float32')
for i in range(1, n):
for j in range(k + n - 1 - i):
foo = brentq(Jn, points[j], points[j + 1], (i, ))
racines[j] = foo
points = racines
zerosj[i][:k] = racines[:k]
return zerosj
示例10: isentrope
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def isentrope(rock, pressures, entropy, T_guess):
def _deltaS(T, S, P, rock):
rock.set_state(P, T)
return rock.S - S
sol = T_guess
temperatures = np.empty_like(pressures)
for i, P in enumerate(pressures):
sol = brentq(_deltaS, rock.bounds[1][0], rock.bounds[1][1], args=(entropy, P, rock))
temperatures[i] = sol
return temperatures
# Define function to find an isentrope given a
# 2D entropy interpolation function
示例11: volume
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def volume(self, pressure, temperature, params):
"""
Returns molar volume. :math:`[m^3]`
"""
T_0 = params['T_0']
Debye_0 = params['Debye_0']
V_0 = params['V_0']
n = params['n']
a1_ii = 6. * params['grueneisen_0'] # EQ 47
a2_iikk = -12. * params['grueneisen_0'] + 36. * pow(
params['grueneisen_0'], 2.) - 18. * params['q_0'] * params['grueneisen_0'] # EQ 47
b_iikk = 9. * params['K_0'] # EQ 28
b_iikkmm = 27. * params['K_0'] * (params['Kprime_0'] - 4.) # EQ 29z
# we need to have a sign change in [a,b] to find a zero. Let us start with a
# conservative guess:
args = (pressure, temperature, V_0, T_0,
Debye_0, n, a1_ii, a2_iikk, b_iikk, b_iikkmm)
try:
sol = bracket(_delta_pressure, params[
'V_0'], 1.e-2 * params['V_0'], args)
except ValueError:
raise Exception(
'Cannot find a volume, perhaps you are outside of the range of validity for the equation of state?')
return opt.brentq(_delta_pressure, sol[0], sol[1], args=args)
示例12: volume
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def volume(self, pressure, temperature, params):
_delta_pressure = lambda x, pressure, temperature, params: pressure - self.pressure(temperature, x, params)
# we need to have a sign change in [a,b] to find a zero. Let us start with a
# conservative guess:
args = (pressure, temperature, params)
try:
sol = bracket(_delta_pressure, params['V_0'],
1.e-2 * params['V_0'], args)
except ValueError:
raise Exception(
'Cannot find a volume, perhaps you are outside of the range of validity for the equation of state?')
return opt.brentq(_delta_pressure, sol[0], sol[1], args=args)
示例13: volume_fourth_order
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def volume_fourth_order(pressure, params):
func = lambda x: birch_murnaghan_fourth(
params['V_0'] / x, params) - pressure
try:
sol = bracket(func, params['V_0'], 1.e-2 * params['V_0'])
except:
raise ValueError(
'Cannot find a volume, perhaps you are outside of the range of validity for the equation of state?')
return opt.brentq(func, sol[0], sol[1])
示例14: volume
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def volume(self, pressure, temperature, params):
"""
Returns molar volume. :math:`[m^3]`
"""
_volume = lambda V, P, T, params: ( P -
self.pressure(T, V, params) )
return brentq(_volume, params['V_0']*0.1, params['V_0']*2., args=(pressure, temperature, params))
示例15: pressure
# 需要導入模塊: from scipy import optimize [as 別名]
# 或者: from scipy.optimize import brentq [as 別名]
def pressure( self, temperature, volume, params):
"""
Returns the pressure of the mineral at a given temperature and volume [Pa]
"""
'''
Ts = self._isentropic_temperature(volume, params)
dE = self._isochoric_energy_change(Ts, temperature, volume, params)
E1 = self._isentropic_energy_change(volume, params) - params['E_0']
E2 = E1 + dE
# Integrate at constant volume (V \int dP = \int gr dE)
dP = (params['grueneisen_0']*(E2 - E1) +
(0.5*params['grueneisen_prime'] *
np.power(params['V_0']/volume, params['grueneisen_n']) *
(E2*E2 - E1*E1))) / volume # eq. 23
P = self._isentropic_pressure(volume, params) + dP
'''
dV = volume*1.e-4
S = self.entropy(0., temperature, volume, params)
delta_S = lambda T, S, V: S - self.entropy(0., T, V, params)
T0 = brentq(delta_S, temperature*0.97, temperature*1.03, args=(S, volume - 0.5*dV))
T1 = brentq(delta_S, temperature*0.97, temperature*1.03, args=(S, volume + 0.5*dV))
E0 = self.molar_internal_energy(0., T0, volume - 0.5*dV, params)
E1 = self.molar_internal_energy(0., T1, volume + 0.5*dV, params)
P = -(E1 - E0)/dV # |S
return P